Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(2): e2306845, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37985567

ABSTRACT

Perovskite oxides have emerged as alternative anode materials for hydrocarbon-fueled solid oxide fuel cells (SOFCs). Nevertheless, the sluggish kinetics for hydrocarbon conversion hinder their commercial applications. Herein, a novel dual-exsolved self-assembled anode for CH4 -fueled SOFCs is developed. The designed Ru@Ru-Sr2 Fe1.5 Mo0.5 O6-δ (SFM)/Ru-Gd0.1 Ce0.9 O2-δ (GDC) anode exhibits a unique hierarchical structure of nano-heterointerfaces exsolved on submicron skeletons. As a result, the Ru@Ru-SFM/Ru-GDC anode-based single cell achieves high peak power densities of 1.03 and 0.63 W cm-2 at 800 °C under humidified H2 and CH4 , surpassing most reported perovskite-based anodes. Moreover, this anode demonstrates negligible degradation over 200 h in humidified CH4 , indicating high resistance to carbon deposition. Density functional theory calculations reveal that the created metal-oxide heterointerfaces of Ru@Ru-SFM and Ru@Ru-GDC have higher intrinsic activities for CH4 conversion compared to pristine SFM. These findings highlight a viable design of the dual-exsolved self-assembled anode for efficient and robust hydrocarbon-fueled SOFCs.

2.
Opt Express ; 31(19): 30146-30159, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710563

ABSTRACT

Non-orthogonal multiple access (NOMA) has been studied as a promising multiple access technology for optical communication systems due to its superior spectral efficiency. However, the multi-user communication systems that employ NOMA with successive interference cancellation (SIC) suffer from error propagation (EP). Besides, the issue of non-ideal rise and fall time of the received signal can result in severe bit error rate (BER) degradation while decoding by the SIC technique. In this paper, we propose a straightforward two-stage program judgment filter (PJF) for signal reshaping and a SIC-free decoding method for NOMA. Based on the amplitude threshold (AT) decoding method, we demonstrate a real-time, two-user uplink underwater wireless optical communication (UWOC) system via field programmable gate arrays (FPGAs). With a power allocation ratio (PAR) of 2:1 (user 1: user 2), the established real-time NOMA-based UWOC system utilizing commercial light emitting diodes (LEDs) achieves a data rate of 30 Mbps for each user with BERs of 7.8 × 10-6 and 3 × 10-4 for user 1 and user 2, respectively. The results show that the AT-based NOMA can obtain a lower BER compared to the SIC-based NOMA, especially for user 2.

3.
Adv Sci (Weinh) ; 9(27): e2201916, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35869034

ABSTRACT

Exploring low cost, highly active, and durable electrocatalysts for oxygen evolution reaction (OER) is of prime importance to boost energy conversion efficiency. Perovskite fluorides are emerging as alternative electrocatalysts for OER, however, their intrinsically active sites during real operation are still elusive. Herein, the self-reconstruction on newly designed NiFe coupled perovskite fluorides during OER process is demonstrated. In situ Raman spectroscopy, ex situ X-ray absorption spectroscopy, and theoretical calculation reveal that Fe incorporation can significantly activate the self-reconstruction of perovskite fluorides and efficiently lower the energy barrier of OER. Benefiting from self-reconstruction and low energy barrier, the KNi0.8 Fe0.2 F3 @nickel foam (KNFF2@NF) electrocatalyst delivers an ultralow overpotential of 258 mV to afford 100 mA cm-2 and an excellent durability for 100 h, favorably rivaling most the state-of-the-art OER electrocatalysts. This protocol provides the fundamental understanding on OER mechanism associated with surface reconstruction for perovskite fluorides.

4.
J Colloid Interface Sci ; 603: 252-258, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34186403

ABSTRACT

Rechargeable zinc-air batteries (ZABs) is primarily driven by the couple of oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Currently,it is still challenging to develop cost-effective, highly efficient, and robust bifunctional catalysts for ZABs. Herein, a novel silver decorated cobalt carbonate (Ag@CoCO3) hybrid catalyst is proposed as the potential bifunctional catalyst to drive OER and ORR for ZABs. Engineering Ag nanoparticles onto the surface of CoCO3 microsphere not only facilitates the charge transfer, but also modulates the electronic structure, which are beneficial to intrinsic bifunctional activity. As a result, this Ag@CoCO3 catalyst yields a substantially enhanced bifunctionality compared to the pristine CoCO3 catalyst. Moreover, the homemade Ag@CoCO3 based ZABs provides a high peak power density of 146 mW cm-2, superior to 107 mW cm-2 for CoCO3 based ZABs and 111 mW cm-2 for commercial Pt/C-IrO2 based ZABs.

5.
Opt Express ; 28(9): 13336-13351, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403811

ABSTRACT

Polarization-based passive millimeter-wave imaging has been applied in several applications, including material clustering, pattern recognition, and target detection. We present here a general formulation of a metal target detection method called dual linear polarization discriminator (DLPD), utilizing passive millimeter-wave polarimetric imagery. Several potential discriminators are defined, and linear polarization difference ratio (LPDR) is selected and proposed to be a new feature discriminator that is sensitive to material composition and able to reduce ambient radiation effects when detecting target with different material and shape. Furthermore, the detection criterion is verified utilizing the threshold values determined by a statistical analysis of LPDR. Outdoor experiments demonstrate that the proposed detection method is highly effective for detecting a metal target in a complex background.

6.
Chemistry ; 26(18): 4063-4069, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-31621137

ABSTRACT

Transition-metal selenides are emerging as alternative bifunctional catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR); however, their activity and stability are still less than desirable. Herein, ultrafine Co0.85 Se nanoparticles encapsulated into carbon nanofibers (CNFs), Co0.85 Se@CNFs, is reported as an integrated bifunctional catalyst for OER and ORR. This catalyst exhibits a low OER potential of 1.58 V vs. reversible hydrogen electrode (RHE) (EJ=10, OER ) to achieve a current density (J) of 10 mA cm-2 and a high ORR potential of 0.84 V vs. RHE (EJ=-1, ORR ) to reach -1 mA cm-2 . Thus, the potential between EJ=10, OER and EJ=-1, ORR is only 0.74 V, indicating considerable bifunctional activity. The excellent bifunctionality can be attributed to high electronic conduction, abundant electrochemically active sites, and the synergistic effect of Co0.85 Se and CNFs. Furthermore, this Co0.85 Se@CNFs catalyst displays good cycling stability for both OER and ORR. This study paves a new way for the rational design of hybrid catalysts composed of transition-metal selenides and carbon materials for efficiently catalyzing OER and ORR.

7.
Chemistry ; 25(47): 11007-11014, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31237958

ABSTRACT

Implementing sustainable energy conversion and storage technologies is highly reliant on crucial oxygen electrocatalysis, such as the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). However, the pursuit of low cost, energetic efficient and robust bifunctional catalysts for OER and ORR remains a great challenge. Herein, the novel Na-ion-deficient Na2-x CoP2 O7 catalysts are proposed to efficiently electrocatalyze OER and ORR in alkaline solution. The engineering of Na-ion deficiency can tune the electronic structure of Co, and thus tailor the intrinsically electrocatalytic performance. Among the sodium cobalt phosphate catalysts, the Na1.95 CoP2 O7 (NCPO5) catalyst exhibits the lowest ΔE (EJ10,OER -EJ-1,ORR ) of only 0.86 V, which favorably outperforms most of the reported non-noble metal catalysts. Moreover, the Na-ion deficiency can stabilize the phase structure and morphology of NCPO5 during the OER and ORR processes. This study highlights the Na-ion deficient Na2-x CoP2 O7 as a promising class of low-cost, highly active and robust bifunctional catalysts for OER and ORR.

8.
Chemistry ; 24(67): 17665-17671, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30193405

ABSTRACT

Oxygen electrocatalysis, including the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), is one of the most important electrochemical processes for sustainable energy conversion and storage technologies. Herein, nickel-based bicarbonates are, for the first time, developed as catalysts for oxygen electrocatalysis, and demonstrate superior electrocatalytic performance in alkaline media. Iron doping can significantly tune the real valence of nickel ions, and consequently tailor the electrocatalytic ability of bicarbonates. Among the nickel-based bicarbonates, Ni0.9 Fe0.1 (HCO3 )2 exhibits the highest bifunctional catalytic activity, with a potential difference of 0.86 V between the OER potential at a current density of 10 mA cm-2 and the ORR potential at a current density of -1 mA cm-2 , which outperforms most of the reported precious-metal-free catalysts. The present work provides new insights into exploring efficient catalysts for oxygen electrocatalysis, and it suggests that, in addition to the extensively studied transition metal hydroxides and oxides, bicarbonates and carbonates also show great potential as precious metal-free catalysts.

9.
Appl Opt ; 55(31): 8690-8697, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27828261

ABSTRACT

The polarization properties of thermal millimeter-wave emission capture inherent information of objects, e.g., material composition, shape, and surface features. In this paper, a polarization-based material-classification technique using passive millimeter-wave polarimetric imagery is presented. Linear polarization ratio (LPR) is created to be a new feature discriminator that is sensitive to material type and to remove the reflected ambient radiation effect. The LPR characteristics of several common natural and artificial materials are investigated by theoretical and experimental analysis. Based on a priori information about LPR characteristics, the optimal range of incident angle and the classification criterion are discussed. Simulation and measurement results indicate that the presented classification technique is effective for distinguishing between metals and dielectrics. This technique suggests possible applications for outdoor metal target detection in open scenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...