Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 18(7): 1582-1593, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37422908

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) are of significant current interest for the development of probe molecules and drug leads. However, they suffer from certain limitations. PROTACs are rule-breaking molecules with sub-optimal cellular permeability, solubility, and other drug-like properties. In particular, they exhibit an unusual dose-response curve where high concentrations of the bivalent molecule inhibit degradation activity, a phenomenon known as the hook effect. This will likely complicate their use in vivo. In this study, we explore a novel approach to create PROTACs that do not exhibit a hook effect. This is achieved by equipping the target protein and E3 ubiquitin ligase ligands with functionalities that undergo rapid and reversible covalent assembly in cellulo. We report the development of Self-Assembled Proteolysis Targeting Chimeras that mediate the degradation of the Von Hippel-Lindau E3 ubiquitin ligase and do not evince a hook effect.


Subject(s)
Proteolysis Targeting Chimera , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Ligands
2.
Chembiochem ; 24(18): e202300392, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37449865

ABSTRACT

Many proteins exist as oligomers (homodimers, homotrimers, etc.). A proven strategy for the development of high affinity ligands for such targets is to link together two modest affinity ligands that allows the formation of a 2 : 2 (or higher-order) protein-ligand complex. We report here the discovery of a convenient, "click-like" reaction for the homodimerization of protein ligands that is efficient, operationally simple to carry out, and tolerant of many functional groups. This chemistry reduces the synthetic burden inherent in the creation of homodimeric ligands since only a single precursor is required. The utility of this strategy is demonstrated by the synthesis of homodimeric inhibitors, including PROTACs.


Subject(s)
Proteins , Ligands , Dimerization , Protein Binding
3.
Luminescence ; 38(8): 1521-1528, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37296519

ABSTRACT

To obtain optimal luminescence, 0.12 g of GdVO4 :3%Eu3+ nanocrystals (NCs) and different volumes of nitrogen-doped carbon dots (N-CDs) crude solution were used as precursors, and the composite synthesized using the hydrothermal deposition method showed optimal luminescence when 11 ml (2.45 mmol) crude solution was used. In addition, similar composites with the same molar ratio as GVE/cCDs(11) were also prepared with the hydrothermal and physical mixing processes. Based on the test results of XRD, XPS, and PL spectra, for the composite GVE/cCDs(11), the highest (lowest) peak intensity of the C-C/C=C (C=O/C=N) bond, which was 1.18 (0.75) times that of GVE/cCDs-m, indicated most N-CDs deposition and led to their highest emission intensity under 365 nm excitation, although nitrogen atoms in the composite were shed slightly during the deposition process. Finally, as can be seen from the patterns designed for security applications that the optimally luminescent composite is one of the most promising candidates in the anti-counterfeiting field.


Subject(s)
Luminescence , Nanoparticles , Carbon/chemistry , Nitrogen/chemistry
4.
Chembiochem ; 23(18): e202200275, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35802347

ABSTRACT

Proteolysis targeting chimeras are of keen interest as probe molecules and drug leads. Their activity is highly sensitive to the length and nature of the linker connecting the E3 Ubiquitin Ligase (E3 Ubl) and target protein (TP) ligands, which therefore requires tedious optimization. The creation of "split PROTACs" from E3 Ubl and TP ligands modified with residues suitable for them to couple when simply mixed together would allow various combinations to be assessed in a combinatorial fashion, thus greatly easing the workload relative to a one-by-one synthesis of many different PROTACs (proteolysis targeting chimeras). We explore oxime chemistry here for this purpose. We show that PROTAC assembly occurs efficiently when the components are mixed at a high concentration, then added to cells. However, in situ coupling of the TP and E3 Ubl ligands is inefficient when these units are added to cells at lower concentrations.


Subject(s)
Oximes , Ubiquitin-Protein Ligases , Ligands , Proteolysis , Ubiquitin-Protein Ligases/metabolism
5.
RSC Chem Biol ; 2(2): 450-467, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34381999

ABSTRACT

Ubiquitination is an important protein post-translational modification regulating many cellular processes in eukaryotes. Ubiquitination is catalyzed by a three-enzyme cascade resulting in the conjugation of the C-terminal carboxylate of ubiquitin (Ub) to the ε-amino group of a lysine residue in the acceptor protein via an isopeptide bond. In vitro enzymatic ubiquitination utilizing Ub ligases has been successfully employed to generate Ub dimers and polymers. However, limitations of the enzymatic approach exist, particularly due to the requirement of specific Ub ligase for any given target protein and the low catalytic efficiency of the Ub ligase. To achieve an in-depth understanding of the molecular mechanism of Ub signaling, new methods are needed to generate mono- and poly-ubiquitinated proteins at a specific site with defined polyubiquitin chain linkage and length. Chemical methods offer an attractive solution to the above-described challenges. In this review, we summarize the recently developed chemical methods for generating ubiquitinated proteins using synthetic and semisynthetic approaches. These new tools and approaches, as an important part of the Ub toolbox, are crucial to our understanding and exploitation of the Ub system for novel therapeutics.

6.
J Am Chem Soc ; 142(46): 19493-19501, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33141564

ABSTRACT

Photocaged cell-permeable ubiquitin probe holds promise in profiling the activity of cellular deubiquitinating enzymes (DUBs) with the much needed temporal control. Here we report a new photocaged cell-permeable ubiquitin probe that undergoes photoactivation upon 365 nm UV treatment and enables intracellular deubiquitinating enzyme profiling. We used a semisynthetic approach to generate modular ubiquitin-based probe containing a tetrazole-derived warhead at the C-terminus of ubiquitin and employed a cyclic polyarginine cell-penetrating peptide (cR10) conjugated to the N-terminus of ubiquitin via a disulfide linkage to deliver the probe into live cells. Upon 365 nm UV irradiation, the tetrazole group is converted to a nitrilimine intermediate in situ, which reacts with nearby nucleophilic cysteine residue from the DUB active site. The new photocaged cell-permeable probe showed good reactivity toward purified DUBs, including USP2, UCHL1, and UCHL3, upon photoirradiation. The Ub-tetrazole probe was also assessed in HeLa cell lysate and showed robust labeling only upon photoactivation. We further carried out protein profiling in intact HeLa cells using the new photocaged cell-permeable ubiquitin probe and identified DUBs captured by the probe using label-free quantitative (LFQ) mass spectrometry. Importantly, the photocaged cell-permeable ubiquitin probe captured DUBs specifically in respective G1/S and G2/M phases in synchronized HeLa cells. Moreover, using this probe DUBs were profiled at different time points following the release of HeLa cells from G1/S phase. Our results showed that photocaged cell-permeable probe represents a valuable new tool for achieving a better understanding of the cellular functions of DUBs.


Subject(s)
Deubiquitinating Enzymes/analysis , Molecular Probes/chemistry , Ubiquitin/chemistry , Catalytic Domain , Cell Membrane Permeability , Cross-Linking Reagents/chemistry , Cysteine/chemistry , Enzyme Activation , HeLa Cells , Humans , Kinetics , Mass Spectrometry , Peptides/chemistry , Photochemical Processes , Radiation Exposure , Time Factors , Ultraviolet Rays
7.
Chem Sci ; 9(40): 7859-7865, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30429995

ABSTRACT

Ubiquitination is an essential eukaryotic post-translational modification that regulates various cellular processes. The removal of ubiquitin from its target protein is catalyzed by deubiquitinating enzymes (DUBs). Although it was proposed that many DUBs specifically interact and recognize ubiquitinated proteins as substrates, more direct evidence is needed to support this notion. Here we report protein-targeting activity-based DUB probes that allowed the identification of DUBs recognizing monoubiquitinated proliferating cell nuclear antigen (PCNA) in Saccharomyces cerevisiae. This new class of DUB probes contain a Michael acceptor as a warhead between ubiquitin and the target protein PCNA through a linkage that mimics the native isopeptide bond. We selected two known and biologically relevant ubiquitination sites on PCNA to generate the DUB probes. This allowed us to interrogate the site-specific deubiquitination of a target protein by DUBs. DUBs were profiled in yeast cell lysates using the two Ub-PCNA DUB probes in conjunction with two control probes that contain a noncleavable linkage but no warhead. We identified yeast DUBs through pulldown coupled with quantitative mass spectrometry analysis of the pulled down proteins. Our results showed that specific yeast DUBs recognize monoubiquitinated PCNA and corroborated previous genetic study. We also identified DUBs as potential new deubiquitinase of PCNA. Remarkably, identified DUBs clearly distinguish the different modification sites on PCNA, thus supporting a high level of DUB specificity beyond the target protein identity.

8.
J Am Chem Soc ; 140(39): 12424-12433, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30240200

ABSTRACT

Advancement in our knowledge of deubiquitinases (DUBs) and their biological functions requires biochemical tools permitting interrogation of DUB activities under physiologically relevant conditions. Activity-based DUB probes (DUB ABPs) have been widely used in investigating the function and activity of DUBs. However, most ubiquitin (Ub)-based DUB ABPs are not cell-permeable, limiting their utility to purified proteins and cell lysates. Lysis of cells usually leads to dilution of the cytoplasm and disruption of the normal cellular organization, which may alter the activity of many DUBs and DUB complexes. Here, we report a new class of cell-permeable DUB ABPs that enable intracellular DUB profiling. We used a semisynthetic approach to generate modular ubiquitin-based DUB probes containing a reactive warhead for covalent trapping of DUBs with a catalytic cysteine. We employed cell-penetrating peptides (CPPs), particualrly cyclic polyarginine (cR10), to deliver the DUB ABPs into cells, as confirmed using live-cell fluorescence microscopy and DUB ABPs containing a fluorophore at the C-terminus of Ub. In comparison to TAT, enhanced intacellular delivery was observed through conjugation of a cyclic polyarginine (cR10) to the N-terminus of ubiquitin via a disulfide linkage. Using the new cell-permeable DUB ABPs, we carried out DUB profiling in intact HeLa cells, and identified active DUBs using immunocapture and label-free quantitative mass spectrometry. Additionally, we demonstrated that the cell-permeable DUB ABPs can be used in assessing the inhibition of DUBs by small-molecule inhibitors in intact cells. Our results indicate that cell-permeable DUB ABPs hold great promise in providing a better understanding of the cellular functions of DUBs and advancing drug discovery efforts targeting human DUBs.


Subject(s)
Deubiquitinating Enzymes/metabolism , Fluorescent Dyes/chemistry , Molecular Probes/chemistry , Ubiquitins/chemistry , Cell Membrane Permeability , Deubiquitinating Enzymes/analysis , Deubiquitinating Enzymes/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Fluorescent Dyes/pharmacokinetics , HeLa Cells , Humans , Microscopy, Fluorescence , Molecular Probes/pharmacokinetics , Peptides/chemistry , Peptides/pharmacokinetics , Ubiquitins/pharmacokinetics
9.
Chembiochem ; 17(11): 995-8, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27113245

ABSTRACT

We report a cysteine-based ligation strategy for generating a monoubiquitylated protein while preserving the native cysteine residues on the acceptor protein. In monoubiquitylation of proliferating cell nuclear antigen (PCNA) this method circumvents the need to mutate the native cysteine residues on PCNA. The chemically ubiquitylated PCNA contains a noncleavable linkage of the same length as the native isopeptide linkage. It also retains the normal function of the native Ub-PCNA in stimulating the ATPase activity of replication factor C (RFC) and lesion bypass synthesis by Polη. This method may be adapted for chemical ubiquitylation of other proteins and for site-specific modification of a target protein at a specific site through sulfhydryl chemistry.


Subject(s)
Cysteine/chemistry , Proliferating Cell Nuclear Antigen/chemistry , Cysteine/metabolism , DNA-Directed DNA Polymerase/metabolism , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Proliferating Cell Nuclear Antigen/metabolism , Ubiquitination , Ultraviolet Rays
10.
Chem Commun (Camb) ; 48(29): 3560-2, 2012 Apr 11.
Article in English | MEDLINE | ID: mdl-22388546

ABSTRACT

Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction.

11.
Chem Commun (Camb) ; 47(39): 11098-100, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21909532

ABSTRACT

A novel and convenient approach to the synthesis of polysubstituted isochromanones is described. Irradiation of 2-formyl phenylalkeno-derivatives with UV light in benzene solution afforded the corresponding products in up to 98% yield. The possible reaction mechanism is proposed and further supported by the isotopic experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...