Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 661: 203-211, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30669053

ABSTRACT

Coal gasification wastewater (CGWW) is a typical toxic and refractory industrial wastewater. Here, a novel phenol and ammonia recovery process (IPE) was employed for CGWW pretreatment, and the coupled system assemble by the IPE process with A2/O system (IPE-A2/O) were operated to enhance the treatment performance of CGWW. The results showed that the IPE pre-treated effluent had a higher BOD5/COD ratio and lower refractory compounds compared to a typical process (MIBK). Subsequent A2/O biological treatment indicated that the A2/O-p system (A2/O system followed IPE process) obtained a higher average COD removal of 92% compared to 87.7% of the control (A2/O-m, A2/O system followed MIBK). The GC-MS analysis suggested that the content of alkanes in the IPE-A2/O effluent was lower than that of the MIBK-A2/O. The high-throughput sequencing revealed Levilinea, Alcaligenes, Acinetobacter, Thauera and Thiobacillus were the core genera in A2/O system. The genera Alcaligenes, Acinetobacter, Thauera and Thiobacillus in the degrading consortium were enriched in the A2/O-p system, leading to increased removals of organic pollutants and TN. These results suggested that the IPE process was a feasible pretreatment method, and the coupled IPE-A2/O system was an alternative technique for treating CGWW.


Subject(s)
Ammonia/analysis , Bioreactors , Microbiota , Phenol/analysis , Waste Disposal, Fluid/methods , Wastewater/analysis , Water Pollutants, Chemical/analysis , Aerobiosis , Anaerobiosis , Bacteria/metabolism , Coal , Microbiota/physiology
2.
Bioresour Technol ; 264: 106-115, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29793117

ABSTRACT

Coal gasification wastewater is a typical high phenol-containing, toxic and refractory industrial wastewater. Here, lab-scale anaerobic-anoxic-oxic system was employed to treat real coal gasification wastewater, and methanol was added to oxic tank as the co-substrate to enhance the removal of refractory organic pollutants. The results showed that the average COD removal in oxic effluent increased from 24.9% to 36.0% by adding methanol, the total phenols concentration decreased from 54.4 to 44.9 mg/L. GC-MS analysis revealed that contents of phenolic components and polycyclic aromatic hydrocarbons (PAHs) were decreased compared to the control and their degradation intermediates were observed. Microbial community revealed that methanol increased the abundance of phenolics and PAHs degraders such as Comamonas, Burkholderia and Sphingopyxis. Moreover, functional analysis revealed the relative abundance of functional genes associated with toluene, benzoate and PAHs degradation pathways was higher than that of control based on KEGG database.


Subject(s)
Coal , Methanol , Microbiota , Wastewater , Water Purification/methods , Bioreactors , Waste Disposal, Fluid , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...