Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(10): 3231-3236, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38415606

ABSTRACT

Two-dimensional (2D) ferroelectrics possessing out-of-plane (OP) polarization are highly desirable for applications and fundamental physics. Here, by first-principles calculations, we reveal that large-angle interlayer twisting can efficiently stabilize an unexpected ordering of sizable electric dipoles, producing OP polarization out of the centrosymmetric ground-state structure of Tl2S, in great contrast to the recently proposed interlayer-sliding ferroelectricity. The ferroelectricity originates from a nonlinear coupling between a polar order dominantly contributed by electrons and an unstable phonon mode associated with a commensurate k point (1/3, 1/3, 0) in the two constituent monolayers, therefore indicating an improper and electronic ferroelectric nature. More interestingly, a flat band and a van Hove singularity occur in its electronic structures just below the Fermi level in the large-angle twisted bilayer Tl2S. The unusual coexistence of improper electronic ferroelectricity, a flat band, and a van Hove singularity in one 2D material offers exceptional opportunities for exploring novel physics and applications.

2.
Adv Sci (Weinh) ; 10(28): e2303967, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37541665

ABSTRACT

Full-Heusler alloys (fHAs) exhibit high mechanical strength with earth-abundant elements, but their metallic properties tend to display small electron diffusion thermopower, limiting potential applications as excellent thermoelectric (TE) materials. Here, it is demonstrated that the Co-based fHAs Co2 XAl (X = Ti, V, Nb) exhibit relatively high thermoelectric performance due to spin and charge coupling. Thermopower contributions from different magnetic mechanisms, including spin fluctuation and magnon drag are extracted. A significant contribution to thermopower from magnetism compared to that from electron diffusion is demonstrated. In Co2 TiAl, the contribution to thermopower from spin fluctuation is higher than that from electron diffusion, resulting in an increment of 280 µW m-1  K-2 in the power factor value. Interestingly, the thermopower contribution from magnon drag can reach up to -47 µV K-1 , which is over 2400% larger than the electron diffusion thermopower. The power factor of Co2 TiAl can reach 4000 µW m-1  K-2 which is comparable to that of conventional semiconducting TE materials. Moreover, the corresponding figure of merit zT can reach ≈0.1 at room temperature, which is significantly larger than that of traditional metallic materials. The work shows a promising unconventional way to create and optimize TE materials by introducing magnetism.

3.
Phys Rev Lett ; 130(25): 256002, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37418707

ABSTRACT

Elemental materials provide clean and fundamental platforms for studying superconductivity. However, the highest superconducting critical temperature (T_{c}) yet observed in elements has not exceeded 30 K. Discovering elemental superconductors with a higher T_{c} is one of the most fundamental and challenging tasks in condensed matter physics. In this study, by applying high pressure up to approximately 260 GPa, we demonstrate that the superconducting transition temperature of elemental scandium (Sc) can be increased to 36 K from the transport measurement, which is a record-high T_{c} for superconducting elements. The pressure dependence of T_{c} implies the occurrence of multiple phase transitions in Sc, which is in agreement with previous x-ray diffraction results. Optimization of T_{c} is achieved in the Sc-V phase, which can be attributed to the strong coupling between d electrons and moderate-frequency phonons, as suggested by our first-principles calculations. This study provides insights for exploring new high-T_{c} elemental metals.


Subject(s)
Electrons , Scandium , Transition Temperature , Temperature , Physics
4.
Adv Sci (Weinh) ; 10(19): e2205479, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37129311

ABSTRACT

Nitride perovskite LaWN3 has been predicted to be a promising ferroelectric material with unique properties for diverse applications. However, due to the challenging sample preparation at ambient pressure, the crystal structure of this nitride remains unsolved, which results in many ambiguities in its properties. Here, the authors report a comprehensive study of LaWN3 based on high-quality samples synthesized by a high-pressure method, leading to a definitive resolution of its crystal structure involving nitrogen deficiency. Combined with theoretical calculations, these results show that LaWN3 adopts an orthorhombic Pna21 structure with a polar symmetry, possessing a unique atomic polarization along the c-axis. The associated atomic polar distortions in LaWN3 are driven by covalent hybridization of W: 5d and N: 2p orbitals, opening a direct bandgap that explains its semiconducting behaviors. The structural stability and electronic properties of this nitride are also revealed to be closely associated with its nitrogen deficiency. The success in unraveling the structural and electronic ambiguities of LaWN3 would provide important insights into the structures and properties of the family of nitride perovskites.

5.
Nat Commun ; 14(1): 2260, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081003

ABSTRACT

The insulator-metal transition in Mott insulators, known as the Mott transition, is usually accompanied with various novel quantum phenomena, such as unconventional superconductivity, non-Fermi liquid behavior and colossal magnetoresistance. Here, based on high-pressure electrical transport and XRD measurements, and first-principles calculations, we find that a unique pressure-induced Mott transition from an antiferromagnetic Mott insulator to a ferromagnetic Weyl metal in the iron oxychalcogenide La2O3Fe2Se2 occurs around 37 GPa without structural phase transition. Our theoretical calculations reveal that such an insulator-metal transition is mainly due to the enlarged bandwidth and diminishing of electron correlation at high pressure, fitting well with the experimental data. Moreover, the high-pressure ferromagnetic Weyl metallic phase possesses attractive electronic band structures with six pairs of Weyl points close to the Fermi level, and its topological property can be easily manipulated by the magnetic field. The emergence of Weyl fermions in La2O3Fe2Se2 at high pressure may bridge the gap between nontrivial band topology and Mott insulating states. Our findings not only realize ferromagnetic Weyl fermions associated with the Mott transition, but also suggest pressure as an effective controlling parameter to tune the emergent phenomena in correlated electron systems.

6.
Sci Bull (Beijing) ; 68(3): 259-265, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36681589

ABSTRACT

The recent discovery of superconductivity (SC) and charge density wave (CDW) in kagome metals AV3Sb5 (A = K, Rb, Cs) provides an ideal playground for the study of emergent electronic orders. Application of moderate pressure leads to a two-dome-shaped SC phase regime in CsV3Sb5 accompanied by the destabilizing of CDW phase. Nonetheless, the nature of this pressure-tuned SC state and its interplay with the CDW are yet to be explored. Here, we perform soft point-contact spectroscopy (SPCS) measurements in CsV3Sb5 to investigate the evolution of superconducting order parameter with pressure. Surprisingly, we find that the superconducting gap is significantly enhanced between the two SC domes, at which the zero-resistance temperature is suppressed and the transition is remarkably broadened. Moreover, the temperature-dependence of the SC gap in this pressure range severely deviates from the conventional Bardeen-Cooper-Schrieffer (BCS) behavior, evidencing for strong Cooper pair phase fluctuations. These findings reveal the complex intertwining of the CDW with SC in the compressed CsV3Sb5, suggesting striking parallel to the cuprate superconductor La2-xBaxCuO4. Our results point to the essential role of charge degree of freedom in the development of intertwining electronic orders, and thus provide new constraints for theories.

7.
Phys Rev Lett ; 128(7): 077001, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35244409

ABSTRACT

The recently discovered kagome superconductors AV_{3}Sb_{5} exhibit tantalizing high-pressure phase diagrams, in which a new domelike superconducting phase emerges under moderate pressure. However, its origin is as yet unknown. Here, we carried out the high-pressure electrical measurements up to 150 GPa, together with the high-pressure x-ray diffraction measurements and first-principles calculations on CsV_{3}Sb_{5}. We find the new superconducting phase to be rather robust and inherently linked to the interlayer Sb2-Sb2 interactions. The formation of Sb2-Sb2 bonds at high pressure tunes the system from two-dimensional to three-dimensional and pushes the p_{z} orbital of Sb2 upward across the Fermi level, resulting in enhanced density of states and increase of T_{C}. Our work demonstrates that the dimensional crossover at high pressure can induce a topological phase transition and is related to the abnormal high-pressure T_{C} evolution. Our findings should apply for other layered materials.

8.
Research (Wash D C) ; 2020: 1672051, 2020.
Article in English | MEDLINE | ID: mdl-32190833

ABSTRACT

The optimization of thermoelectric materials involves the decoupling of the transport of electrons and phonons. In this work, an increased Mg1-Mg2 distance, together with the carrier conduction network protection, has been shown as an effective strategy to increase the weighted mobility (U = µm ∗3/2) and hence thermoelectric power factor of Mg3+δ Sb2-y Bi y family near room temperature. Mg3+δ Sb0.5Bi1.5 has a high carrier mobility of 247 cm2 V-1 s-1 and a record power factor of 3470 µW m-1 K-2 at room temperature. Considering both efficiency and power density, Mg3+δ Sb1.0Bi1.0 with a high average ZT of 1.13 and an average power factor of 3184 µW m-1 K-2 in the temperature range of 50-250°C would be a strong candidate to replace the conventional n-type thermoelectric material Bi2Te2.7Se0.3. The protection of the transport channel through Mg sublattice means alloying on Sb sublattice has little effect on electron while it significantly reduces phonon thermal conductivity, providing us an approach to decouple electron and phonon transport for better thermoelectric materials.

9.
Phys Rev Lett ; 123(12): 127201, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31633976

ABSTRACT

EuTiO_{3} is an antiferromagnetic (AFM) material showing strong spin-lattice interactions, large magnetoelectric response, and quantum paraelectric behavior at low temperatures. Using electronic-structure calculations, we show that adding electrons to the conduction band leads to ferromagnetism. The transition from antiferromagnetism to ferromagnetism is predicted to occur at ∼0.08 electrons/Eu (∼1.4×10^{21} cm^{-3}). This effect is also predicted to occur in heterostructures such as LaAlO_{3}/EuTiO_{3}, where ferromagnetism is triggered by the formation of a high-density two-dimensional electron gas in the EuTiO_{3}. Our analysis indicates that the coupling between Ti 3d and Eu 5d plays a crucial role in lowering the Ti 3d conduction band in the ferromagnetic (FM) phase, leading to an almost linear dependence of the energy difference between the FM and AFM ordering on the carrier concentration. These findings open up possibilities in designing field-effect transistors using EuTiO_{3}-based heterointerfaces to probe fundamental interactions between highly localized spins and itinerant, polarized charge carriers.

10.
Nano Lett ; 15(5): 3224-9, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25830817

ABSTRACT

An original ab initio procedure is developed and applied to a ferroelectric nanocomposite, in order to reveal the effect of electrical vortices on electronic properties. Such procedure involves the combination of two large-scale numerical schemes, namely, the effective Hamiltonian (to incorporate ionic degrees of freedom) and the linear-scaling three-dimensional fragment method (to treat electronic degrees of freedom). The use of such procedure sheds some light into the origin of the recently observed current that is activated at rather low voltages in systems possessing electrical vortices. It also reveals a novel electronic phenomena that is a systematic control of the type of the band-alignment (i.e., type I versus type II) within the same material via the temperature-driven annihilation/formation of electrical topological defects.

11.
Phys Rev Lett ; 115(26): 267602, 2015 Dec 31.
Article in English | MEDLINE | ID: mdl-26765030

ABSTRACT

First-principles calculations are performed to investigate the elasto-optic properties of four different structural phases in (001) epitaxial PbTiO(3) films under tensile strain: a tetragonal (T) phase and an orthorhombic (O) phase, which are the ground states for small and large strain, respectively, and two low-symmetry, monoclinic phases of Cm and Pm symmetries that have low total energy in the intermediate strain range. It is found that the refractive indices of the T and O phases respond differently to epitaxial strain, evidenced by a change of sign of their effective elasto-optic coefficients, and as a result of presently discovered correlations between refractive index, axial ratio, and magnitude of the ferroelectric polarization. The difference in refractive indices between T and O and the existence of such correlations naturally lead to large elasto-optic coefficients in the Cm and Pm states in the intermediate strain range, because Cm structurally bridges the T and O phases (via polarization rotation and a rapid change of its axial ratio) and Pm adopts a similar axial ratio and polarization magnitude to Cm. The present results therefore broaden the palette of functionalities of ferroelectric materials, and suggest new routes to generate systems with unprecedentedly large elasto-optic conversion.

12.
J Phys Condens Matter ; 24(31): 312201, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22776811

ABSTRACT

An energetic expression containing four different macroscopic terms is proposed to explain and understand coupled magnetic orders (and the directions of the simultaneously occurring ferromagnetic and/or antiferromagnetic vectors) in terms of anti-phase and/or in-phase tilting of oxygen octahedra in magnetic and multiferroic perovskites. This expression is derived from a suggested simple microscopic formula, and has its roots in the Dzyaloshinsky-Moriya interaction. Comparison with data available in the literature and with first-principles calculations we conduct here confirms the validity of such a simple and general law for any tested structural paraelectric and even ferroelectric phase, and for any chosen direction of any selected primary magnetic vector.

SELECTION OF CITATIONS
SEARCH DETAIL
...