Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1393138, 2024.
Article in English | MEDLINE | ID: mdl-38887461

ABSTRACT

Tea bud detection is the first step in the precise picking of famous teas. Accurate and fast tea bud detection is crucial for achieving intelligent tea bud picking. However, existing detection methods still exhibit limitations in both detection accuracy and speed due to the intricate background of tea buds and their small size. This study uses YOLOv5 as the initial network and utilizes attention mechanism to obtain more detailed information about tea buds, reducing false detections and missed detections caused by different sizes of tea buds; The addition of Spatial Pyramid Pooling Fast (SPPF) in front of the head to better utilize the attention module's ability to fuse information; Introducing the lightweight convolutional method Group Shuffle Convolution (GSConv) to ensure model efficiency without compromising accuracy; The Mean-Positional-Distance Intersection over Union (MPDIoU) can effectively accelerate model convergence and reduce the training time of the model. The experimental results demonstrate that our proposed method achieves precision (P), recall rate (R) and mean average precision (mAP) of 93.38%, 89.68%, and 95.73%, respectively. Compared with the baseline network, our proposed model's P, R, and mAP have been improved by 3.26%, 11.43%, and 7.68%, respectively. Meanwhile, comparative analyses with other deep learning methods using the same dataset underscore the efficacy of our approach in terms of P, R, mAP, and model size. This method can accurately detect the tea bud area and provide theoretical research and technical support for subsequent tea picking.

2.
Foods ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38672852

ABSTRACT

Rose tea is a type of flower tea in China's reprocessed tea category, which is divided into seven grades, including super flower, primary flower, flower bud, flower heart, yellow flower, scattered flower, and waste flower. Grading rose tea into distinct quality levels is a practice that is essential to boosting their competitive advantage. Manual grading is inefficient. We provide a lightweight model to advance rose tea grading automation. Firstly, four kinds of attention mechanisms were introduced into the backbone and compared. According to the experimental results, the Convolutional Block Attention Module (CBAM) was chosen in the end due to its ultimate capacity to enhance the overall detection performance of the model. Second, the lightweight module C2fGhost was utilized to change the original C2f module in the neck to lighten the network while maintaining detection performance. Finally, we used the SIoU loss in place of the CIoU loss to improve the boundary regression performance of the model. The results showed that the mAP, precision (P), recall (R), FPS, GFLOPs, and Params values of the proposed model were 86.16%, 89.77%, 83.01%, 166.58, 7.978, and 2.746 M, respectively. Compared with the original model, the mAP, P, and R values increased by 0.67%, 0.73%, and 0.64%, the GFLOPs and Params decreased by 0.88 and 0.411 M, respectively, and the speed was comparable. The model proposed in this study also performed better than other advanced detection models. It provides theoretical research and technical support for the intelligent grading of roses.

SELECTION OF CITATIONS
SEARCH DETAIL
...