Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Food Sci ; 89(6): 3729-3744, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38709878

ABSTRACT

Citrus fruits are a diverse and economically important group of fruit crops known for their distinctive flavors and high nutritional value. Their cultivation and consumption contribute significantly to the global agricultural economy and offer a wide range of health benefits. Among the genetic diversity of citrus species, Citrus x limon (L.) Osbeck is particularly relevant due to its chemical composition and potential health benefits. Two cultivars from the Sicily region (southern Italy) were compared for their phenolic content and preliminary antioxidant activity to select the distinctive extract with potential biological activity. A detailed characterization revealed the occurrence of phenolics, coumarins, and flavonoids. The quantification of metabolites contained in the selected extract was performed by an ultrahigh-performance liquid chromatographic method coupled with an ultraviolet detector. Different concentrations were tested in vivo through the fish embryo acute toxicity test, and the 50% lethal dose of 107,833 µg mL-1 was calculated. Finally, the effect of the extract on hatching was evaluated, and a dose-dependent relationship with the accelerated hatching rate was reported, suggesting a Femminello Zagara Bianca green peel upregulating effect on the hatching enzymes. PRACTICAL APPLICATION: Citrus fruits and their products continue to be one of the natural food sources with the highest waste output. In this study, we demonstrate how food industry waste, particularly lemon peel, is rich in bioactive compounds with anti-inflammatory and antioxidant properties that may be used in the nutraceuticals industry.


Subject(s)
Antioxidants , Citrus , Embryo, Nonmammalian , Flavonoids , Fruit , Metabolomics , Phenols , Plant Extracts , Zebrafish , Animals , Citrus/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Fruit/chemistry , Antioxidants/pharmacology , Antioxidants/analysis , Embryo, Nonmammalian/drug effects , Phenols/analysis , Phenols/toxicity , Metabolomics/methods , Flavonoids/analysis , Sicily , Coumarins/analysis , Chromatography, High Pressure Liquid/methods
2.
Plants (Basel) ; 12(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903892

ABSTRACT

Phytotechnologies used for cleaning up urban and suburban polluted soils (i.e., brownfields) have shown some weakness in the excessive extent of the timeframe required for them to be effectively operating. This bottleneck is due to technical constraints, mainly related to both the nature of the pollutant itself (e.g., low bio-availability, high recalcitrance, etc.) and the plant (e.g., low pollution tolerance, low pollutant uptake rates, etc.). Despite the great efforts made in the last few decades to overcome these limitations, the technology is in many cases barely competitive compared with conventional remediation techniques. Here, we propose a new outlook on phytoremediation, where the main goal of decontaminating should be re-evaluated, considering additional ecosystem services (ESs) related to the establishment of a new vegetation cover on the site. The aim of this review is to raise awareness and stress the knowledge gap on the importance of ES associated with this technique, which can make phytoremediation a valuable tool to boost an actual green transition process in planning urban green spaces, thereby offering improved resilience to global climate change and a higher quality of life in cities. This review highlights that the reclamation of urban brownfields through phytoremediation may provide several regulating (i.e., urban hydrology, heat mitigation, noise reduction, biodiversity, and CO2 sequestration), provisional (i.e., bioenergy and added-value chemicals), and cultural (i.e., aesthetic, social cohesion, and health) ESs. Although future research should specifically be addressed to better support these findings, acknowledging ES is crucial for an exhaustive evaluation of phytoremediation as a sustainable and resilient technology.

3.
Antioxidants (Basel) ; 12(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36978813

ABSTRACT

The comparative chemical composition of different part of Faustrime fruits (peels, pulp, albedo, and seeds) extracted with different solvents was determined by GC-MS and UHPLC-HRMS QTof. The obtained data were also combined for their in vitro antioxidant activity by multivariate analysis to define a complex fingerprint of the fruit. The principal component analysis model showed the significative occurrence of volatile organic compounds as α-bisabolol and α-trans-bergamotol in the pulp and albedo, hexanoic acid in the seeds, and several coumarins and phenolics in the peels. The higher radical scavenging activity of the pulp was related to the incidence of citric acid in partial least square regression.

4.
Int J Phytoremediation ; 25(3): 283-292, 2023.
Article in English | MEDLINE | ID: mdl-35605106

ABSTRACT

Fast-growing hybrid poplars have been tested for their potential to remove trace elements (TE) from polluted soil in several temperate regions. Despite their potential, they have rarely been tested in countries with a cold temperate climate. The current study screened four different Populus hybrids for phytoextraction of four TEs (i.e., As, Cu, Pb, and Zn) on an abandoned brownfield site in southern Quebec (Canada). The main results showed that under the current experimental conditions, the most important traits determining the actual phytoextraction rate are Biological Concentration Factor (BCF) and TE accumulation in the aboveground biomass, rather than biomass productivity. Although the overall performance of the chosen hybrids was rather poor, the presence of poplar stands enhanced the movement of mobile contaminants in soil, which led to an increase in their concentration in the root zone. This aspect suggests possible strategies for using these plants with high transpiration rates in future phytoremediation projects, including either possible rotation with more effective TE phytoextractor plants (e.g., hyperaccumulators) that can remove high TE amounts that have migrated from the deeper soil layers following poplar plantation, or phytostabilization.


Although the use of fast-growing woody species is commonly reported as a feasible option for the phytoextraction of TEs in temperate climates, most available information pertains to only a few species, mostly willows. This is one of the few studies reporting the results of a field test carried out in a cold temperate region, in which different poplar hybrid clones were tested for their potential in TEs phytoextraction. This research determined that although the studied poplar genotypes have no potential under these experimental conditions, the increase in TE concentration observed in the rhizosphere after two years suggests possible alternative phytoremediation strategies (phytostabilization) for managing polluted sites in cold temperate climates.


Subject(s)
Metals, Heavy , Populus , Salix , Soil Pollutants , Trace Elements , Quebec , Metals, Heavy/analysis , Biodegradation, Environmental , Soil Pollutants/analysis , Canada , Soil
5.
Plants (Basel) ; 11(21)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365377

ABSTRACT

Competition for freshwater is increasing, with a growing population and the effects of climate change limiting its availability. In this experiment, Lactuca sativa plants were grown hydroponically with or without a 15% share of seawater (12 dS m-1) alone or intercropped with Salsola soda to demonstrate if L. sativa benefits from sodium removal by its halophyte companion. Contrary to the hypothesis, saline-grown L. sativa plants demonstrated reduced growth compared to the control plants regardless of the presence or absence of S. soda. Both limitations in CO2 supply and photosystem efficiency may have decreased CO2 assimilation rates and growth in L. sativa plants grown in the seawater-amended solutions. Surprisingly, leaf pigment concentrations increased in salt-treated L. sativa plants, and most notably among those intercropped with S. soda, suggesting that intercropping may have led to shade-induced increases in chlorophyll pigments. Furthermore, increased levels of proline indicate that salt-treated L. sativa plants were experiencing stress. In contrast, S. soda produced greater biomass in saline conditions than in control conditions. The mineral element, carbohydrate, protein, polyphenol and nitrate profiles of both species differed in their response to salinity. In particular, salt-sensitive L. sativa plants had greater accumulations of Fe, Ca, P, total phenolic compounds and nitrates under saline conditions than salt-tolerant S. soda. The obtained results suggest that intercropping salt-sensitive L. sativa with S. soda in a hydroponic system did not ameliorate the growing conditions of the salt-sensitive species as was hypothesized and may have exacerbated the abiotic stress by increasing competition for limited resources such as light. In contrast, the saline medium induced an improvement in the nutritional profile of S. soda. These results demonstrate an upper limit of the seawater share and planting density that can be used in saline agriculture when intercropping S. soda plants with other salt-sensitive crops.

6.
Front Plant Sci ; 13: 992395, 2022.
Article in English | MEDLINE | ID: mdl-36247634

ABSTRACT

Olea europaea L. is a glycophyte representing one of the most important plants in the Mediterranean area, both from an economic and agricultural point of view. Its adaptability to different environmental conditions enables its cultivation in numerous agricultural scenarios, even on marginal areas, characterized by soils unsuitable for other crops. Salt stress represents one current major threats to crop production, including olive tree. In order to overcome this constraint, several cultivars have been evaluated over the years using biochemical and physiological methods to select the most suitable ones for cultivation in harsh environments. Thus the development of novel methodologies have provided useful tools for evaluating the adaptive capacity of cultivars, among which the evaluation of the plant-microbiota ratio, which is important for the maintenance of plant homeostasis. In the present study, four olive tree cultivars (two traditional and two for intensive cultivation) were subjected to saline stress using two concentrations of salt, 100 mM and 200 mM. The effects of stress on diverse cultivars were assessed by using biochemical analyses (i.e., proline, carotenoid and chlorophyll content), showing a cultivar-dependent response. Additionally, the olive tree response to stress was correlated with the leaf endophytic bacterial community. Results of the metabarcoding analyses showed a significant shift in the resident microbiome for plants subjected to moderate salt stress, which did not occur under extreme salt-stress conditions. In the whole, these results showed that the integration of stress markers and endophytic community represents a suitable approach to evaluate the adaptation of cultivars to environmental stresses.

7.
Photosynth Res ; 154(2): 155-167, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36104474

ABSTRACT

Leaf senescence at the end of the growing season is a complex process stimulated by changes in daylength and temperature that prepares deciduous trees for winter by reducing photosynthetic rates and remobilization of nutrients. Extending the duration of photosynthetic activity could have important consequences for the translocation of heavy metals in the phytoremediation of contaminated sites using deciduous trees like willow. In the present study, three Salix cultivars ('India,' 'SX67,' and 'Fish Creek') that were observed to maintain green leaves late into autumn were evaluated over an 11-week period extending from mid-September to mid-November on a brownfield site in Montreal, Canada. Gas exchange rates, chlorophyll fluorescence, and leaf pigments were measured weekly. A general trend of declining stomatal conductance and transpiration were observed early in the trial, followed by reductions in photosynthetic efficiency and concentrations of chl a, chl b, and carotenoids, in agreement with other studies. In particular, the cultivar 'Fish Creek' had higher rates of gas exchange and pigment concentrations than either 'SX67' or 'India,' but values for these parameters also declined more rapidly over the course of the trial. Both photoperiod and soil and air temperatures were strong drivers of changes in photosynthetic activity in all three of these cultivars according to correlation analyses. Further studies should focus on their biomass production and heavy metal accumulation capacity in light of the observed variation in photosynthetic activity stimulated by seasonal changes in light and temperature.


Subject(s)
Salix , Seasons , Chlorophyll , Photosynthesis , Trees , Plant Leaves
8.
Plants (Basel) ; 11(6)2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35336622

ABSTRACT

Few phytoremediation studies have been conducted under semi-arid conditions where plants are subjected to drought and/or salinity stress. Although the genus Salix is frequently used in phytoremediation, information regarding its tolerance of drought and salinity is limited. In the present study, Salix acmophylla Boiss. cuttings from three sites (Adom, Darom and Mea She'arim) were tested for tolerance to salinity stress by growing them hydroponically under either control or increasing NaCl concentrations corresponding to electrical conductivities of 3 and 6 dS m-1 in a 42-day greenhouse trial. Gas exchange parameters, chlorophyll fluorescence and concentration, and water-use efficiency were measured weekly and biomass was collected at the end of the trial. Root, leaf and stem productivity was significantly reduced in the Adom ecotype, suggesting that Darom and Mea She'arim are the more salt-tolerant of the three ecotypes. Net assimilation and stomatal conductance rates in salt-treated Adom were significantly reduced by the last week of the trial, coinciding with reduced intrinsic water use efficiency and chlorophyll a content and greater stomatal aperture. In contrast, early reductions in stomatal conductance and stomatal aperture in Darom and Mea She'arim stabilized, together with pigment concentrations, especially carotenoids. These results suggest that Darom and Mea She'arim are more tolerant to salt than Adom, and provide further phenotypic support to the recently published data demonstrating their genetic similarities and their usefulness in phytoremediation under saline conditions.

9.
Plants (Basel) ; 11(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35214865

ABSTRACT

Legumes are one of the most economically important and biodiverse families in plants recognised as the basis to develop functional foods. Among these, the Vigna genus stands out as a good representative because of its relatively recent African origin as well as its outstanding potential. Africa is a great biodiversity centre in which a great number of species are spread, but only three of them, Vigna unguiculata, Vigna subterranea and Vigna vexillata, were successfully domesticated. This review aims at analysing and valorising these species by considering the perspective of human activity and what effects it exerts. For each species, we revised the origin history and gave a focus on where, when and how many times domestication occurred. We provided a brief summary of bioactive compounds naturally occurring in these species that are fundamental for human wellbeing. The great number of wild lineages is a key point to improve landraces since the domestication process caused a loss of gene diversity. Their genomes hide a precious gene pool yet mostly unexplored, and genes lost during human activity can be recovered from the wild lineages and reintroduced in cultivated forms through modern technologies. Finally, we describe how all this information is game-changing to the design of future crops by domesticating de novo.

10.
J Environ Manage ; 302(Pt A): 114012, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34731708

ABSTRACT

The volume of municipal solid waste (MSW) inputs is rapidly increasing with a growing human population, and its composition is changing due an increased diversity of materials being deposited. There is an associated increase in leachate, a common toxic byproduct of MSW facilities that must be collected and treated prior to its release into the environment. There is growing interest in plant-based methods that are economical and efficient for leachate toxicity assessment such as biological tests that use indicator species. In the present study, the tolerance thresholds of two herbaceous species, Sinapis alba L. (mustard) and Triticum aestivum L. (wheat) to increasing shares of leachate sourced from an MSW facility in the Czech Republic were assessed through a variety of physiological parameters. Soil-based biotests showed a stimulation in the shoot biomass, leaf expansion, primary root elongation and carbon assimilation rate of the selected plant species to leachate concentrations between 20 and 50 %. Higher leachate concentrations led to reductions in most physiological parameters, especially the elongation of seedling roots when growth solutions with >50 % leachate were applied. While S. alba was more sensitive to increasing proportions of leachate in terms of growth parameters of the shoot tissues, photosystem II efficiency and chlorophyll pigment concentrations were more responsive in T. aestivum, indicating species-dependent differences. The present biotests provide further support for the use of both Sinapis alba L and Triticum aestivum L. as indicator species of phytotoxicity.


Subject(s)
Refuse Disposal , Water Pollutants, Chemical , Chlorophyll , Humans , Seedlings/chemistry , Sinapis , Solid Waste , Triticum , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
11.
Waste Manag ; 136: 162-173, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34678658

ABSTRACT

Phytoremediation is a potentially suitable technique for the reclamation of toxic landfill leachate (LL) by decreasing its volume through water uptake and improving its composition by uptake, accumulation and amelioration of pollutants. We investigated the use of two parameters, the LL concentration and the Leachate Pollution Index (LPI), a method used to determine the phytotoxicity potential of a leachate source based on a weighted sum of its components, to set the best LL dilution to apply when poplar clone 'Orion' and willow clone 'Levante' are selected for phytoremediation. Cuttings were watered with five LL concentrations ranging from 0 to 100%. The poplar clone showed significantly higher values than the willow clone for lowest effective concentration index (LOEC) for leaf (i.e. 11.3% vs 10.5%; p = 0.0284) and total biomass (i.e. 10.9% vs 10.6%; p = 0.0402) and for lowest effective LPI for leaf (i.e. 12.3 vs 12.1; p = 0.0359) and total biomass (i.e. 12.8 versus 12.2; p = 0.0365), respectively, with effectiveness demonstrating the LOEC or LPI value at which the parameter is negatively affected. Photosynthetic rates were higher in poplar than willow in both control and the lowest LL dilution, but rapidly declined in both at higher LL dilutions. Although a direct translation of data from bench trials to field conditions should be investigated, we concluded that in the establishment phase, the poplar hybrid is more tolerant than the willow hybrid to LL. We also provide evidence for LPI as a potential predictor for setting LL irrigation levels in the initial phase of a phyto-treatment approach.


Subject(s)
Populus , Salix , Water Pollutants, Chemical , Biodegradation, Environmental , Biomass , Water Pollutants, Chemical/toxicity
12.
J Environ Manage ; 277: 111454, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33070021

ABSTRACT

Phytotechnological approaches using living plants are currently being proposed to address a wide range of environmental purposes including the treatment of landfill leachate (LL). Despite their popularity, few studies have investigated this possibility under actual Mediterranean conditions using fast-growing trees. This research reports the results of a two-year project where poplar and willow grown in mesocosm were tested for their ability to withstand and remove specific pollutants from different [Low: 7% (1st year) and 15% (2nd year); High: 15% (1st year) and 30% (2nd year)] amounts of LL. Results indicate that both species were able to treat 340 (Low) and 680 (High) m3 ha-1 in the establishment year (70 days) and 2470 (Low) and 4950 (High) m3 ha-1 in the second year (150 days). Both species yielded the same aboveground biomass, but under high LL treatment, poplar performed better than willow. Poplar showed on average significantly higher extraction rates for Cd, Cu, P, and N than willow. Moreover, under high LL treatment, poplar also seemed more efficient than willow in decreasing the concentration of specific pollutants (BOD5, COD and As) in output effluent. However, with low LL loads both species were able to significantly reduce other compounds (i.e. NH4-N, Cu and Ni). By contrast, Cl, surfactants, and NO3-N, had a tendency to accumulate over time in the effluent and could still represent an actual constraint to large-scale application of the technique. The fate of such pollutants should be investigated with further research to better inform strategies used to manage low amounts of high-concentrated effluent.


Subject(s)
Populus , Salix , Water Pollutants, Chemical , Biodegradation, Environmental , Climate
13.
J Environ Manage ; 247: 688-697, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31279146

ABSTRACT

At an Italian field test site the efficiency of phytoextraction of toxic trace elements (TEs) from the soil is determined by uptake capacity, bioavailability of TEs in the soil and biomass yield of the plants involved. Altering the quantity and type of biomass produced, especially among fast-growing trees, may be one method of increasing phytoextraction efficiency. In poplar bark and wood show different TE concentration. Poplar also shows changing proportions of bark and wood with increasing diameter at breast height (DBH). Though it is often thought that the amount of TE accumulated in the biomass increases with the size of the plant, in the current study we show that this is only partially true. In fact while Zn is highly accumulated by the largest (60 mm DBH) poplar plants, Cd, Cu, and Ni were more concentrated in slightly smaller plants (50 mm DBH), and Pb in even smaller (40 mm DBH). These findings could open new strategies for managing a poplar phytoextraction stand in terms of coppicing techniques and planting cycles in order to address specific targeted TEs and enhance the overall performance of this green technology.


Subject(s)
Metals, Heavy , Populus , Soil Pollutants , Trace Elements , Biodegradation, Environmental , Soil
14.
Plant Sci ; 271: 1-8, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29650146

ABSTRACT

This work investigated the effect of Zn excess on growth, metal accumulation and photosynthetic changes in Tetradenia riparia, in relation to possible variations in the composition of the plant volatilome. Experiments were carried out in hydroponics exposing plants to a range of Zn concentrations. Zinc excess negatively affected plant growth in a dose-dependent manner. The metal was accumulated proportionally to its concentration in the medium and preferentially allocated to roots. All the photosynthetic parameters and the concentration of some photosynthetic pigments were negatively affected by Zn, whereas the level of leaf total soluble sugars remained unchanged. Twenty-three different VOCs were identified in the plant volatilome. Each compound was emitted at a different level and intensity of emission was manifold increased by the presence of Zn in the growth medium. The Zn-induced compounds could represent both an adaptive response (f.i. methanol, acetylene, C6-aldehydes, isoprene, terpenes) and a damage by-product (f.i. propanal, acetaldehyde, alkyl fragments) of the metal presence in the culture medium. Given that the Zn-mediated induction of those VOCs, considered protective, occurred even under a Zn-limited photosynthetic capacity, our work supports the hypothesis of an active role of such molecules in an adaptive plant response to trace metal stress.


Subject(s)
Lamiaceae/metabolism , Volatile Organic Compounds/metabolism , Zinc/metabolism , Carotenoids/analysis , Chlorophyll/analysis , Lamiaceae/drug effects , Lamiaceae/growth & development , Photosynthesis/drug effects , Plant Leaves/chemistry , Zinc/pharmacology
15.
Environ Res ; 164: 356-366, 2018 07.
Article in English | MEDLINE | ID: mdl-29567421

ABSTRACT

Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology.


Subject(s)
Biodegradation, Environmental , Salix , Sewage , Soil Pollutants , Trace Elements , Soil
16.
Environ Sci Pollut Res Int ; 25(9): 9114-9131, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29340860

ABSTRACT

The current field study aims to assess the suitability of four different plant species (i.e. poplar, willow, hemp and alfalfa) to be used for trace element (TE) (i.e. Cd, Cu, Ni, Pb and Zn) phytoextraction under hot-arid Mediterranean climate conditions. Plants were grown for two consecutive years on a moderate TE contaminated soil, supplied with water and mineral nutrients. The growth and physiological parameters were assessed throughout the trial to compare the response of plants to the environmental pollution, and TE uptake rates were measured for aboveground plant tissues. The phytoextraction rate for each species was expressed as a function of aboveground biomass yield and the TE uptake and translocation within the plant. Alfalfa played a significant role in reducing extractable Ni (60.6%) and Zn (46%) in the soil, whereas hemp reduced 32% of extractable Cd and 46% of extractable Pb; poplar decreased extractable Cd (37%), Ni (49%), Pb (46%) and Zn (63%); and willow reduced the extractable Zn (73%) compared to the beginning of the trial. No change in total TE content was observed; however, poplar and willow were able to extract and accumulate the highest amount of Zn (3200 and 5200 g ha-1 year-1 respectively) and Cu (182 and 116 g ha-1 year-1), whereas hemp, with 36 g ha-1 year-1, showed the best phytoextraction potential for Pb. Overall, we found a positive correlation between the phytoextraction rate and biomass yield, extractable TE concentration and translocation factor (TF) and a negative relationship with Ca concentration in the soil.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Trace Elements/analysis , Biodegradation, Environmental , Biomass , Climate , Metals, Heavy/chemistry , Populus , Salix , Soil , Trace Elements/chemistry
17.
BMC Plant Biol ; 15: 246, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26459343

ABSTRACT

BACKGROUND: High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS: Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS: Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS: The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.


Subject(s)
Adaptation, Physiological/genetics , Hydrocarbons/toxicity , Petroleum/toxicity , Salix/genetics , Soil Pollutants/toxicity , Transcriptome/genetics , Adaptation, Physiological/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Herbivory/drug effects , Herbivory/genetics , Molecular Sequence Annotation , Propanols/metabolism , Salix/drug effects , Salix/growth & development , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcriptome/drug effects , Trees/drug effects , Trees/genetics , Trees/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...