Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Magn Reson Med ; 89(3): 908-921, 2023 03.
Article in English | MEDLINE | ID: mdl-36404637

ABSTRACT

PURPOSE: To evaluate feasibility and reproducibility of liver diffusion-weighted (DW) MRI using cardiac-motion-robust, blood-suppressed, reduced-distortion techniques. METHODS: DW-MRI data were acquired at 3T in an anatomically accurate liver phantom including controlled pulsatile motion, in eight healthy volunteers and four patients with known or suspected liver metastases. Standard monopolar and motion-robust (M1-nulled, and M1-optimized) DW gradient waveforms were each acquired with single-shot echo-planar imaging (ssEPI) and multishot EPI (msEPI). In the motion phantom, apparent diffusion coefficient (ADC) was measured in the motion-affected volume. In healthy volunteers, ADC was measured in the left and right liver lobes separately to evaluate ADC reproducibility between the two lobes. Image distortions were quantified using the normalized cross-correlation coefficient, with an undistorted T2-weighted reference. RESULTS: In the motion phantom, ADC mean and SD in motion-affected volumes substantially increased with increasing motion for monopolar waveforms. ADC remained stable in the presence of increasing motion when using motion-robust waveforms. M1-optimized waveforms suppressed slow flow signal present with M1-nulled waveforms. In healthy volunteers, monopolar waveforms generated significantly different ADC measurements between left and right liver lobes ( p = 0 . 0078 $$ p=0.0078 $$ , reproducibility coefficients (RPC) =  470 × 1 0 - 6 $$ 470\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for monopolar-msEPI), while M1-optimized waveforms showed more reproducible ADC values ( p = 0 . 29 $$ p=0.29 $$ , RPC = 220 × 1 0 - 6 $$ \mathrm{RPC}=220\times 1{0}^{-6} $$ mm 2 $$ {}^2 $$ /s for M1-optimized-msEPI). In phantom and healthy volunteer studies, motion-robust acquisitions with msEPI showed significantly reduced image distortion ( p < 0 . 001 $$ p<0.001 $$ ) compared to ssEPI. Patient scans showed reduction of wormhole artifacts when combining M1-optimized waveforms with msEPI. CONCLUSION: Synergistic effects of combined M1-optimized diffusion waveforms and msEPI acquisitions enable reproducible liver DWI with motion robustness, blood signal suppression, and reduced distortion.


Subject(s)
Diffusion Magnetic Resonance Imaging , Liver Neoplasms , Humans , Diffusion Magnetic Resonance Imaging/methods , Reproducibility of Results , Motion , Liver Neoplasms/diagnostic imaging , Echo-Planar Imaging/methods
2.
J Magn Reson Imaging ; 58(3): 951-962, 2023 09.
Article in English | MEDLINE | ID: mdl-36583628

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) may allow for breast cancer screening MRI without a contrast injection. Multishot methods improve prone DWI of the breasts but face different challenges in the supine position. PURPOSE: To establish a multishot DWI (msDWI) protocol for supine breast MRI and to evaluate the performance of supine vs. prone msDWI. STUDY TYPE: Prospective. POPULATION: Protocol optimization: 10 healthy women (ages 22-56), supine vs. prone: 24 healthy women (ages 22-62) and five women (ages 29-61) with breast tumors. FIELD STRENGTH/SEQUENCE: 3-T, protocol optimization msDWI: free-breathing (FB) 2-shots, FB 4-shots, respiratory-triggered (RT) 2-shots, RT 4-shots, supine vs. prone: RT 4-shot msDWI, T2-weighted fast-spin echo. ASSESSMENT: Protocol optimization and supine vs. prone: three observers performed an image quality assessment of sharpness, aliasing, distortion (vs. T2), perceived SNR, and overall image quality (scale of 1-5). Apparent diffusion coefficients (ADCs) in fibroglandular tissue (FGT) and breast tumors were measured. STATISTICAL TESTS: Effect of study variables on dichotomized ratings (4/5 vs. 1/2/3) and FGT ADCs were assessed with mixed-effects logistic regression. Interobserver agreement utilized Gwet's agreement coefficient (AC). Lesion ADCs were assessed by Bland-Altman analysis and concordance correlation (ρc ). P value <0.05 was considered statistically significant. RESULTS: Protocol optimization: 4-shots significantly improved sharpness and distortion; RT significantly improved sharpness, aliasing, perceived SNR, and overall image quality. FGT ADCs were not significantly different between shots (P = 0.812), FB vs. RT (P = 0.591), or side (P = 0.574). Supine vs. prone: supine images were rated significantly higher for sharpness, aliasing, and overall image quality. FGT ADCs were significantly higher supine; lesion ADCs were highly correlated (ρc  = 0.92). DATA CONCLUSION: Based on image quality, supine msDWI outperformed prone msDWI. Lesion ADCs were highly correlated between the two positions, while FGT ADCs were higher in the supine position. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Humans , Female , Prospective Studies , Prone Position , Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging , Reproducibility of Results , Breast Neoplasms/diagnostic imaging , Echo-Planar Imaging/methods
3.
J Magn Reson Imaging ; 53(3): 807-817, 2021 03.
Article in English | MEDLINE | ID: mdl-33067849

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) has shown promise to screen for breast cancer without a contrast injection, but image distortion and low spatial resolution limit standard single-shot DWI. Multishot DWI methods address these limitations but introduce shot-to-shot phase variations requiring correction during reconstruction. PURPOSE: To investigate the performance of two multishot DWI reconstruction methods, multiplexed sensitivity encoding (MUSE) and shot locally low-rank (shot-LLR), compared to single-shot DWI in the breast. STUDY TYPE: Prospective. POPULATION: A total of 45 women who consented to have multishot DWI added to a clinically indicated breast MRI. FIELD STRENGTH/SEQUENCES: Single-shot DWI reconstructed by parallel imaging, multishot DWI with four or eight shots reconstructed by MUSE and shot-LLR, 3D T2 -weighted imaging, and contrast-enhanced MRI at 3T. ASSESSMENT: Three blinded observers scored images for 1) general image quality (perceived signal-to-noise ratio [SNR], ghosting, distortion), 2) lesion features (discernment and morphology), and 3) perceived resolution. Apparent diffusion coefficient (ADC) of the lesion was also measured and compared between methods. STATISTICAL TESTS: Image quality features and perceived resolution were assessed with a mixed-effects logistic regression. Agreement among observers was estimated with a Krippendorf's alpha using linear weighting. Lesion feature ratings were visualized using histograms, and correlation coefficients of lesion ADC between different methods were calculated. RESULTS: MUSE and shot-LLR images were rated to have significantly better perceived resolution (P < 0.001), higher SNR (P < 0.005), and a lower level of distortion (P < 0.05) with respect to single-shot DWI. Shot-LLR showed reduced ghosting artifacts with respect to both MUSE (P < 0.001) and single-shot DWI (P < 0.001). Eight-shot DWI had improved perceived SNR and perceived resolution with respect to four-shot DWI (P < 0.005). DATA CONCLUSION: Multishot DWI enables increased resolution and improved image quality with respect to single-shot DWI in the breast. Shot-LLR reconstructs multishot DWI with minimal ghosting artifacts. The improvement of multishot DWI in image quality increases with an increased number of shots. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Artifacts , Female , Humans , Magnetic Resonance Imaging , Prospective Studies , Reproducibility of Results
4.
Neuroimage ; 225: 117442, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33039620

ABSTRACT

BACKGROUND: Myelin specific imaging techniques to characterize white matter in demyelinating diseases such as multiple sclerosis (MS) have become an area of increasing focus. Gray matter myelination is an important marker of cortical microstructure, and its impairment is relevant in progressive MS. However, its assessment is challenging due to its thin layers. While myelin water imaging and ultra-short TE imaging have not yet been implemented to assess cortical myeloarchitecture, magnetization transfer (MT) shows promise. A recent development of the MT technique, ihMT, has demonstrated greater myelin sensitivity/specificity. Here we implemented a 3D ihMT acquisition and analysis to characterize cortical gray matter myeloarchitecture. METHODS: 20 young healthy volunteers were imaged with a 3D ihMTRAGE sequence and quantitative metrics of ihMT (ihMTsat), and dual frequency-offset MT (dual MTsat) were calculated. Cortical surface-based analysis of ihMTsat and dual MTsat were performed and compared. We also compared the cortical ihMTsat map to a cortical surface-based map of T1-weighted images (T1w), defined as a proxy of myelin content. RESULTS: Cortical ihMTsat and dual MTsat maps were in qualitative agreement with previous work and the cortical T1w map, showing higher values in primary cortices and lower values in the insula. IhMTsat and dual MTsat were significantly correlated but with important regional differences. The ratio ihMTsat/dual MTsat highlighted higher ihMTsat values in the primary cortices and sulci. CONCLUSION: ihMTsat, a quantitative metric of ihMT, can be reliably measured in cortical gray matter and shows unique contrast between cortical regions.


Subject(s)
Cerebral Cortex/diagnostic imaging , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Myelin Sheath , Adult , Brain/diagnostic imaging , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Male , White Matter/diagnostic imaging , Young Adult
5.
Neuroimage ; 223: 117371, 2020 12.
Article in English | MEDLINE | ID: mdl-32931943

ABSTRACT

BACKGROUND: Arterial Spin Labeling (ASL) MRI can provide quantitative images that are sensitive to both time averaged blood flow and its temporal fluctuations. 3D image acquisitions for ASL are desirable because they are more readily compatible with background suppression to reduce noise, can reduce signal loss and distortion, and provide uniform flow sensitivity across the brain. However, single-shot 3D acquisition for maximal temporal resolution typically involves degradation of image quality through blurring or noise amplification by parallel imaging. Here, we report a new approach to accelerate a common stack of spirals 3D image acquisition by pseudo golden-angle rotation and compressed sensing reconstruction without any degradation of time averaged blood flow images. METHODS: 28 healthy volunteers were imaged at 3T with background-suppressed unbalanced pseudo-continuous ASL combined with a pseudo golden-angle Stack-of-Spirals 3D RARE readout. A fully-sampled perfusion-weighted volume was reconstructed by 3D non-uniform Fast Fourier Transform (nuFFT) followed by sum-of-squares combination of the 32 individual channels. Coil sensitivities were estimated followed by reconstruction of the 39 single-shot volumes using an L1-wavelet Compressed-Sensing reconstruction. Finally, brain connectivity analyses were performed in regions where BOLD signal suffers from low signal-to-noise ratio and susceptibility artifacts. RESULTS: Image quality, assessed with a non-reference 3D blurring metric, of full time averaged blood flow was comparable to a conventional interleaved acquisition. The temporal resolution provided by the acceleration enabled identification and quantification of resting-state networks even in inferior regions such as the amygdala and inferior frontal lobes, where susceptibility artifacts can degrade conventional resting-state fMRI acquisitions. CONCLUSION: This approach can provide measures of blood flow modulations and resting-state networks for free within any research or clinical protocol employing ASL for resting blood flow.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Artifacts , Brain/anatomy & histology , Female , Humans , Male , Signal-To-Noise Ratio , Spin Labels , Young Adult
6.
Magn Reson Med ; 84(6): 2964-2980, 2020 12.
Article in English | MEDLINE | ID: mdl-32602958

ABSTRACT

PURPOSE: To demonstrate the feasibility of integrating the magnetization transfer (MT) preparations required for inhomogeneous MT (ihMT) within an MPRAGE-style acquisition. Such a sequence allows for reduced power deposition and easy inclusion of other modules. METHODS: An ihMT MPRAGE-style sequence (ihMTRAGE) was initially simulated to investigate acquisition of the 3D ihMT data sequentially, or in an interleaved manner. The ihMTRAGE sequence was implemented on a 3T clinical scanner to acquire ihMT data from the brain and spine. RESULTS: Both simulations and in vivo data provided an ihMT signal that was significantly greater using a sequential ihMTRAGE acquisition, compared with an interleaved implementation. Comparison with a steady-state ihMT acquisition (defined as having one MT RF pulse between successive acquisition modules) demonstrated how ihMTRAGE allows for a reduction in average power deposition, or greater ihMT signal at equal average power deposition. Inclusion of a prospective motion-correction module did not significantly affect the ihMT signal obtained from regions of interest in the brain. The ihMTRAGE acquisition allowed combination with a spatial saturation module to reduce phase wrap artifacts in a cervical spinal cord acquisition. CONCLUSIONS: Use of preparations necessary for ihMT experiments within an MPRAGE-style sequence provides a useful alternative for acquiring 3D ihMT data. Compared with our steady-state implementation, ihMTRAGE provided reduced power deposition, while allowing use of the maximum intensity from off-resonance RF pulses. The 3D ihMTRAGE acquisition allowed combination of other modules with the preparation necessary for ihMT experiments, specifically motion compensation and spatial saturation modules.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Artifacts , Brain/diagnostic imaging , Imaging, Three-Dimensional , Prospective Studies
7.
Radiol Imaging Cancer ; 2(3): e190076, 2020 05.
Article in English | MEDLINE | ID: mdl-33778712

ABSTRACT

Multishot multiplexed sensitivity-encoding diffusion-weighted imaging is a feasible and easily implementable routine breast MRI protocol that yields high-quality diffusion-weighted breast images.Purpose: To compare multiplexed sensitivity-encoding (MUSE) diffusion-weighted imaging (DWI) and single-shot DWI for lesion visibility and differentiation of malignant and benign lesions within the breast.Materials and Methods: In this prospective institutional review board-approved study, both MUSE DWI and single-shot DWI sequences were first optimized in breast phantoms and then performed in a group of patients. Thirty women (mean age, 51.1 years ± 10.1 [standard deviation]; age range, 27-70 years) with 37 lesions were included in this study and underwent scanning using both techniques. Visual qualitative analysis of diffusion-weighted images was accomplished by two independent readers; images were assessed for lesion visibility, adequate fat suppression, and the presence of artifacts. Quantitative analysis was performed by calculating apparent diffusion coefficient (ADC) values and image quality parameters (signal-to-noise ratio [SNR] for lesions and fibroglandular tissue; contrast-to-noise ratio) by manually drawing regions of interest within the phantoms and breast tumor tissue. Interreader variability was determined using the Cohen κ coefficient, and quantitative differences between MUSE DWI and single-shot DWI were assessed using the Mann-Whitney U test; significance was defined at P < .05.Results: MUSE DWI yielded significantly improved image quality compared with single-shot DWI in phantoms (SNR, P = .001) and participants (lesion SNR, P = .009; fibroglandular tissue SNR, P = .05; contrast-to-noise ratio, P = .008). MUSE DWI ADC values showed a significant difference between malignant and benign lesions (P < .001). No significant differences were found between MUSE DWI and single-shot DWI in the mean, maximum, and minimum ADC values (P = .96, P = .28, and P = .49, respectively). Visual qualitative analysis resulted in better lesion visibility for MUSE DWI over single-shot DWI (κ = 0.70).Conclusion: MUSE DWI is a promising high-spatial-resolution technique that may enhance breast MRI protocols without the need for contrast material administration in breast screening.Keywords: Breast, MR-Diffusion Weighted Imaging, OncologySupplemental material is available for this article.© RSNA, 2020.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Adult , Aged , Feasibility Studies , Female , Humans , Middle Aged , Prospective Studies
8.
Magn Reson Med ; 82(2): 680-692, 2019 08.
Article in English | MEDLINE | ID: mdl-30953396

ABSTRACT

PURPOSE: To improve image quality and spatial coverage for abdominal perfusion imaging by implementing an arterial spin labeling (ASL) sequence that combines variable-density 3D fast-spin-echo (FSE) with Cartesian trajectory and compressed-sensing (CS) reconstruction. METHODS: A volumetric FSE sequence was modified to include background-suppressed pseudo-continuous ASL labeling and to support variable-density (VD) Poisson-disk sampling for acceleration. We additionally explored the benefits of center oversampling and variable outer k-space sampling. Fourteen healthy volunteers were scanned on a 3T scanner to test acceleration factors as well as the various sampling schemes described under synchronized-breathing to limit motion issues. A CS reconstruction was implemented using the BART toolbox to reconstruct perfusion-weighted ASL volumes, assessing the impact of acceleration, different reconstruction, and sampling strategies on image quality. RESULTS: CS acceleration is feasible with ASL, and a strong renal perfusion signal could be observed even at very high acceleration rates (≈15). We have shown that ASL k-space complex subtraction was desirable before CS reconstruction. Although averaging of multiple highly accelerated images helped to reduce artifacts from physiologic fluctuations, superior image quality was achieved by interleaving of different highly undersampled pseudo-random spatial sampling patterns and using 4D-CS reconstruction. Combination of these enhancements produces high-quality ASL volumes in under 5 min. CONCLUSIONS: High-quality isotropic ASL abdominal perfusion volumes can be obtained in healthy volunteers with a VD-FSE and CS reconstruction. This lays the groundwork for future developments toward whole abdomen free-breathing non-contrast perfusion imaging.


Subject(s)
Abdomen/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Adult , Humans , Kidney/diagnostic imaging , Phantoms, Imaging , Spin Labels , Young Adult
9.
Magn Reson Med ; 81(1): 542-550, 2019 01.
Article in English | MEDLINE | ID: mdl-30229559

ABSTRACT

PURPOSE: To demonstrate the feasibility of noninvasively measuring pancreatic perfusion using pseudocontinuous arterial spin labeling (ASL) and to derive quantitative blood-flow and transit-time measurements in healthy volunteers. METHODS: A pseudocontinuous ASL sequence with background suppression and a single-slice single-shot fast-spin-echo readout was acquired at 3 T in 10 subjects with a single standard postlabeling delay (PLD) of 1.5 s and in 4 additional subjects with 4 PLD from 0.7 to 2 s. An imaging synchronized breathing approach was used to minimize motion artifacts during the 3 min of acquisition. Scan-rescan reproducibility was assessed in 3 volunteers with single-delay ASL. Quantitative blood flow and arterial transit time (ATT) were derived and the impact of ATT correction was studied using either subject-specific ATT in the second group or an average ATT derived from the group with multidelay ASL for subjects with single-delay ASL. RESULTS: Successful ASL acquisitions were performed in all volunteers. An average pancreatic blood flow of 201 ± 40 mL/100 g/min was measured in the single-delay group using an assumed ATT of 750 ms Average ATT measured in the multidelay group was 1029 ± 89 ms Using the longer, measured ATT reduced the measured flow to 162 ± 12 and 168 ± 28 mL/100 g/min with subject-specific or average ATT correction, respectively. ASL signal heterogeneities were observed at shorter PLD, potentially linked to its complex vascular supply and islet distribution. CONCLUSIONS: ASL enables reliable measurement of pancreatic perfusion in healthy volunteers. It presents a valuable alternative to contrast-enhanced methods and may be useful for diagnosis and characterization of several inflammatory, metabolic, and neoplastic diseases affecting the pancreas.


Subject(s)
Aorta, Abdominal/diagnostic imaging , Magnetic Resonance Imaging , Pancreas/diagnostic imaging , Spin Labels , Adult , Algorithms , Artifacts , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted/methods , Inflammation , Male , Motion , Pancreas/blood supply , Pancreas/pathology , Pancreatic Neoplasms/diagnostic imaging , Perfusion , Regional Blood Flow , Reproducibility of Results , Respiration , Signal-To-Noise Ratio , Time Factors , Young Adult
10.
Magn Reson Med ; 81(4): 2439-2449, 2019 04.
Article in English | MEDLINE | ID: mdl-30474312

ABSTRACT

PURPOSE: To assess the influence of background suppression and retrospective realignment on physiological noise and image quality in free-breathing renal pseudo-continuous arterial spin labeling (pCASL). METHODS: Ten subjects were scanned at 3T with a pCASL prepared single-slice coronal acquisition through the kidneys under free breathing. Multiple acquisitions were performed with various levels of residual background signal based on optimization of pulse timings to achieve specific background suppression levels (<2%, <5%, <10%, <20%). A retrospective non-rigid motion-correction strategy was also implemented. RESULTS: Decreasing level of residual background signal was associated with higher temporal SNR. The retrospective motion-correction provided an additional but not statistically significant improvement in tSNR. The highest image quality was obtained with the lowest level of residual background signal accompanied by the retrospective motion-correction, although no significant difference in quantitative renal blood-flow could be observed. CONCLUSIONS: Renal perfusion measurement with ASL under free breathing is feasible and robust against physiological noise when using strong background suppression strategies. Finally, retrospective motion-correction further improves image quality but cannot replace background suppression.


Subject(s)
Arteries/diagnostic imaging , Image Processing, Computer-Assisted/methods , Kidney/blood supply , Kidney/diagnostic imaging , Kidney/pathology , Adult , Algorithms , Blood Flow Velocity , Female , Healthy Volunteers , Hot Temperature , Humans , Image Enhancement/methods , Magnetic Resonance Imaging , Male , Motion , Perfusion , Reproducibility of Results , Respiration , Signal-To-Noise Ratio , Spin Labels
11.
Magn Reson Imaging ; 51: 173-181, 2018 09.
Article in English | MEDLINE | ID: mdl-29678540

ABSTRACT

PURPOSE: To evaluate the reproducibility of quantitative diffusion measurements obtained with reduced Field of View (rFOV) and Multi-shot EPI (msEPI) acquisitions, using single-shot EPI (ssEPI) as a reference. METHODS: Diffusion phantom experiments, and prostate diffusion-weighted imaging in healthy volunteers and patients with known or suspected prostate cancer were performed across the three different sequences. Quantitative diffusion measurements of apparent diffusion coefficient, and diffusion kurtosis parameters (healthy volunteers), were obtained and compared across diffusion sequences (rFOV, msEPI, and ssEPI). Other possible confounding factors like b-value combinations and acquisition parameters were also investigated. RESULTS: Both msEPI and rFOV have shown reproducible quantitative diffusion measurements relative to ssEPI; no significant difference in ADC was observed across pulse sequences in the standard diffusion phantom (p = 0.156), healthy volunteers (p ≥ 0.12) or patients (p ≥ 0.26). The ADC values within the non-cancerous central gland and peripheral zone of patients were 1.29 ±â€¯0.17 × 10-3 mm2/s and 1.74 ±â€¯0.23 × 10-3 mm2/s respectively. However, differences in quantitative diffusion parameters were observed across different number of averages for rFOV, and across b-value groups and diffusion models for all the three sequences. CONCLUSION: Both rFOV and msEPI have the potential to provide high image quality with reproducible quantitative diffusion measurements in prostate diffusion MRI.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Prostate/diagnostic imaging , Adult , Aged , Echo-Planar Imaging/methods , Evaluation Studies as Topic , Humans , Male , Middle Aged , Phantoms, Imaging , Reproducibility of Results
12.
Magn Reson Med ; 79(6): 2902-2911, 2018 06.
Article in English | MEDLINE | ID: mdl-28971512

ABSTRACT

PURPOSE: To investigate the feasibility of substantially reducing acoustic noise while performing diffusion tensor imaging (DTI) on a compact 3T (C3T) MRI scanner equipped with a 42-cm inner-diameter asymmetric gradient. METHODS: A-weighted acoustic measurements were made using 10 mT/m-amplitude sinusoidal waveforms, corresponding to echo-planar imaging (EPI) echo spacing of 0.25 to 5.0 ms, on a conventional, whole-body 3T MRI and on the C3T. Acoustic measurements of DTI with trapezoidal EPI waveforms were then made at peak gradient performance on the C3T (80 mT/m amplitude, 700 T/m/s slew rate) and at derated performance (33 mT/m, 10 to 50 T/m/s) for acoustic noise reduction. DTI was acquired in two different phantoms and in seven human subjects, with and without gradient-derating corresponding to multi- and single-shot acquisitions, respectively. RESULTS: Sinusoidal waveforms on the C3T were quieter by 8.5 to 15.6 A-weighted decibels (dBA) on average as compared to the whole-body MRI. The derated multishot DTI acquisition noise level was only 8.7 dBA (at 13 T/m/s slew rate) above ambient, and was quieter than non-derated, single-shot DTI by 22.3 dBA; however, the scan time was almost quadrupled. Although derating resulted in negligible diffusivity differences in the phantoms, small biases in diffusivity measurements were observed in human subjects (apparent diffusion coefficient = +9.3 ± 8.8%, fractional anisotropy = +3.2 ± 11.2%, radial diffusivity = +9.4 ± 16.8%, parallel diffusivity = +10.3 ± 8.4%). CONCLUSION: The feasibility of achieving reduced acoustic noise levels with whole-brain DTI on the C3T MRI was demonstrated. Magn Reson Med 79:2902-2911, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging , Acoustics , Adult , Anisotropy , Brain/diagnostic imaging , Echo-Planar Imaging , Feasibility Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Noise , Phantoms, Imaging , Reproducibility of Results , Signal-To-Noise Ratio , Temperature , Young Adult
14.
Magn Reson Med ; 73(1): 126-38, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24443248

ABSTRACT

PURPOSE: To accelerate the acquisition of simultaneously high spatial and angular resolution diffusion imaging. METHODS: Accelerated imaging is achieved by recovering the diffusion signal at all voxels simultaneously from under-sampled k-q space data using a compressed sensing algorithm. The diffusion signal at each voxel is modeled as a sparse complex Gaussian mixture model. The joint recovery scheme enables incoherent under-sampling of the 5-D k-q space, obtained by randomly skipping interleaves of a multishot variable density spiral trajectory. This sampling and reconstruction strategy is observed to provide considerably improved reconstructions than classical k-q under-sampling and reconstruction schemes. The complex model enables to account for the noise statistics without compromising the computational efficiency and theoretical convergence guarantees. The reconstruction framework also incorporates compensation of motion induced phase errors that result from the multishot acquisition. RESULTS: Reconstructions of the diffusion signal from under-sampled data using the proposed method yields accurate results with errors less that 5% for different accelerations and b-values. The proposed method is also shown to perform better than standard k-q acceleration schemes. CONCLUSIONS: The proposed scheme can significantly accelerate the acquisition of high spatial and angular resolution diffusion imaging by accurately reconstructing crossing fiber architectures from under-sampled data.


Subject(s)
Brain/anatomy & histology , Data Compression/methods , Diffusion Tensor Imaging/methods , Image Interpretation, Computer-Assisted/methods , Models, Statistical , White Matter/anatomy & histology , Algorithms , Computer Simulation , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
15.
Brain Connect ; 4(9): 636-40, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25264168

ABSTRACT

Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.


Subject(s)
Brain Mapping , Brain/anatomy & histology , Connectome , Diffusion Tensor Imaging , Imaging, Three-Dimensional , Nerve Fibers, Myelinated/ultrastructure , Gray Matter/anatomy & histology , Humans , White Matter/anatomy & histology
16.
Radiology ; 273(1): 175-84, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24865310

ABSTRACT

PURPOSE: To evaluate differences in the structural connectome among patients with normal cognition (NC), mild cognitive impairment (MCI), and Alzheimer disease (AD) and to determine associations between the structural connectome and cortical amyloid deposition. MATERIALS AND METHODS: Patients enrolled in a multicenter biomarker study (Alzheimer's Disease Neuroimaging Initiative [ADNI] 2) who had both baseline diffusion-tensor (DT) and florbetapir positron emission tomography (PET) data at the time of data analyses in November 2012 were studied. All institutions received institutional review board approval. There were 102 patients in ADNI 2 who met criteria for analysis. Patients' T1-weighted images were automatically parcellated into cortical regions of interest. Standardized uptake value ratio (SUVr) was calculated from florbetapir PET images for composite cortical regions (frontal, cingulate, parietal, and temporal). Structural connectome graphs were created from DT images, and connectome topology was analyzed in each region by using graph theoretical metrics. Analysis of variance of structural connectome metrics and florbetapir SUVr across diagnostic group was performed. Linear mixed-effects models were fit to analyze the effect of florbetapir SUVr on structural connectome metrics. RESULTS: Diagnostic group (NC, MCI, or AD) was associated with changes in weighted structural connectome metrics, with decreases from the NC group to the MCI group to the AD group shown for (a) strength in the bilateral frontal, right parietal, and bilateral temporal regions (P < .05); (b) weighted local efficiency in the left temporal region (P < .05); and (c) weighted clustering coefficient in the bilateral frontal and left temporal regions (P < .05). Increased cortical florbetapir SUVr was associated with decreases in weighted structural connectome metrics; namely, strength (P = .00001), weighted local efficiency (P = .00001), and weighted clustering coefficient (P = .0006), independent of brain region. For every 0.1-unit increase in florbetapir SUVr, there was a 14% decrease in strength, an 11% decrease in weighted local efficiency, and a 9% decrease in weighted clustering coefficient, regardless of the analyzed cortical region or, in the case of weighted local efficiency and clustering coefficient, diagnostic group. CONCLUSION: Increased amyloid burden, as measured with florbetapir PET imaging, is related to changes in the topology of the large-scale cortical network architecture of the brain, as measured with graph theoretical metrics of DTI tractography, even in the preclinical stages of AD. Online supplemental material is available for this article.


Subject(s)
Alzheimer Disease/pathology , Connectome/methods , Diffusion Tensor Imaging , Plaque, Amyloid/pathology , Positron-Emission Tomography , Aged , Alzheimer Disease/diagnostic imaging , Biomarkers , Female , Humans , Male , North America , Plaque, Amyloid/diagnostic imaging
17.
PLoS One ; 9(3): e91424, 2014.
Article in English | MEDLINE | ID: mdl-24608869

ABSTRACT

Diffusion tensor imaging (DTI) is typically used to study white matter fiber pathways, but may also be valuable to assess the microstructure of cortical gray matter. Although cortical diffusion anisotropy has previously been observed in vivo, its cortical depth dependence has mostly been examined in high-resolution ex vivo studies. This study thus aims to investigate the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo on a clinical 3 T scanner. Specifically, a novel multishot constant-density spiral DTI technique with inherent correction of motion-induced phase errors was used to achieve a high spatial resolution (0.625 × 0.625 × 3 mm) and high spatial fidelity with no scan time penalty. The results show: (i) a diffusion anisotropy in the cortical gray matter, with a primarily radial diffusion orientation, as observed in previous ex vivo and in vivo studies, and (ii) a cortical depth dependence of the fractional anisotropy, with consistently higher values in the middle cortical lamina than in the deep and superficial cortical laminae, as observed in previous ex vivo studies. These results, which are consistent across subjects, demonstrate the feasibility of this technique for investigating the cortical depth dependence of the diffusion anisotropy in the human cortex in vivo.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/metabolism , Diffusion Tensor Imaging , Gray Matter/cytology , Gray Matter/metabolism , Anisotropy , Diffusion , Humans , Image Processing, Computer-Assisted
18.
Magn Reson Med ; 71(3): 1044-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23630029

ABSTRACT

PURPOSE: To present a novel technique for high-resolution stimulated echo diffusion tensor imaging with self-navigated interleaved spirals readout trajectories that can inherently and dynamically correct for image artifacts due to spatial and temporal variations in the static magnetic field (B0) resulting from eddy currents, tissue susceptibilities, subject/physiological motion, and hardware instabilities. METHODS: The Hahn spin echo formed by the first two 90° radiofrequency pulses is balanced to consecutively acquire two additional images with different echo times and generate an inherent field map, while the diffusion-prepared stimulated echo signal remains unaffected. For every diffusion-encoding direction, an intrinsically registered field map is estimated dynamically and used to effectively and inherently correct for off-resonance artifacts in the reconstruction of the corresponding diffusion-weighted image. RESULTS: After correction with the dynamically acquired field maps, local blurring artifacts are specifically removed from individual stimulated echo diffusion-weighted images and the estimated diffusion tensors have significantly improved spatial accuracy and larger fractional anisotropy. CONCLUSION: Combined with the self-navigated interleaved spirals acquisition scheme, our new method provides an integrated high-resolution short-echo time diffusion tensor imaging solution with inherent and dynamic correction for both motion-induced phase errors and off-resonance effects.


Subject(s)
Artifacts , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Echo-Planar Imaging/methods , Image Enhancement/methods , White Matter/anatomy & histology , Algorithms , Humans , Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity , Signal Processing, Computer-Assisted
19.
Magn Reson Med ; 71(2): 790-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23450457

ABSTRACT

PURPOSE: To develop and compare three novel reconstruction methods designed to inherently correct for motion-induced phase errors in multishot spiral diffusion tensor imaging without requiring a variable-density spiral trajectory or a navigator echo. THEORY AND METHODS: The first method simply averages magnitude images reconstructed with sensitivity encoding from each shot, whereas the second and third methods rely on sensitivity encoding to estimate the motion-induced phase error for each shot and subsequently use either a direct phase subtraction or an iterative conjugate gradient algorithm, respectively, to correct for the resulting artifacts. Numerical simulations and in vivo experiments on healthy volunteers were performed to assess the performance of these methods. RESULTS: The first two methods suffer from a low signal-to-noise ratio or from residual artifacts in the reconstructed diffusion-weighted images and fractional anisotropy maps. In contrast, the third method provides high-quality, high-resolution diffusion tensor imaging results, revealing fine anatomical details such as a radial diffusion anisotropy in cortical gray matter. CONCLUSION: The proposed sensitivity encoding + conjugate gradient method can inherently and effectively correct for phase errors, signal loss, and aliasing artifacts caused by both rigid and nonrigid motion in multishot spiral diffusion tensor imaging, without increasing the scan time or reducing the signal-to-noise ratio.


Subject(s)
Artifacts , Brain/anatomy & histology , Diffusion Tensor Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Motion , Reproducibility of Results , Sensitivity and Specificity
20.
PLoS One ; 8(2): e57956, 2013.
Article in English | MEDLINE | ID: mdl-23469117

ABSTRACT

Carriers of blue cone monochromacy have fewer cone photoreceptors than normal. Here we examine how this disruption at the level of the retina affects visual function and cortical organization in these individuals. Visual resolution and contrast sensitivity was measured at the preferred retinal locus of fixation and visual resolution was tested at two eccentric locations (2.5° and 8°) with spectacle correction only. Adaptive optics corrected resolution acuity and cone spacing were simultaneously measured at several locations within the central fovea with adaptive optics scanning laser ophthalmoscopy (AOSLO). Fixation stability was assessed by extracting eye motion data from AOSLO videos. Retinotopic mapping using fMRI was carried out to estimate the area of early cortical regions, including that of the foveal confluence. Without adaptive optics correction, BCM carriers appeared to have normal visual function, with normal contrast sensitivity and visual resolution, but with AO-correction, visual resolution was significantly worse than normal. This resolution deficit is not explained by cone loss alone and is suggestive of an associated loss of retinal ganglion cells. However, despite evidence suggesting a reduction in the number of retinal ganglion cells, retinotopic mapping showed no reduction in the cortical area of the foveal confluence. These results suggest that ganglion cell density may not govern the foveal overrepresentation in the cortex. We propose that it is not the number of afferents, but rather the content of the information relayed to the cortex from the retina across the visual field that governs cortical magnification, as under normal viewing conditions this information is similar in both BCM carriers and normal controls.


Subject(s)
Color Vision Defects/pathology , Color Vision Defects/physiopathology , Visual Cortex/pathology , Visual Cortex/physiopathology , Adult , Cell Count , Color , Female , Fovea Centralis/pathology , Humans , Magnetic Resonance Imaging , Male , Retinal Ganglion Cells/pathology , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL
...