Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 271: 116368, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33383428

ABSTRACT

Chemicals such as triclosan are a concern because of their presence on daily products (soap, deodorant, hand sanitizers …), consequently this compound has an ubiquitous presence in the environment. Little is known about the effect of this bactericide on aquatic life. The aim of this study is to analyze triclosan exposure (24 h) to an in vitro model, zebrafish hepatocytes cell line (ZF-L), if it can be cytotoxic (mitochondrial activity, membrane stability and apoptosis) and if can activate ATP-binding cassette (ABC) proteins (activity, expression and protein/compound affinity). Triclosan was cytotoxic to hepatocytes when exposed to concentrations (1-4 mg/L). The results showed impaired mitochondria function, as well, plasma membrane rupture and an increase of apoptotic cells. We observed an ABC proteins activity inhibition in cells exposed to 0.5 and 1 mg/L. When ABCBs and ABCC2 proteins expression were analyzed, there was an increase of protein expression in both ABC proteins families on cells exposed to 1 mg/L of triclosan. On molecular docking results, triclosan and the fluorescent used as substrate (rhodamine) presented high affinity with all ABC proteins family tested, showing a greater affinity with ABCC2. In conclusion, this study showed that triclosan can be cytotoxic to ZF-L. Molecular docking indicated high affinity between triclosan and the tested pumps.


Subject(s)
Triclosan , Animals , Cell Line , Hepatocytes , Humans , Molecular Docking Simulation , Multidrug Resistance-Associated Protein 2 , Triclosan/toxicity , Zebrafish
2.
Environ Sci Pollut Res Int ; 27(22): 27961-27970, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32405941

ABSTRACT

Aquatic environments can be easily contaminated due to anthropogenic activities that may affect local biota. Microalgae are abundant and have an important role on the food chain. Consequently, they stand out as promising models for studies of contaminants. This study investigated the cytotoxic effects of atrazine and copper (separate and mixture) exposure in microalgae Desmodesmus communis, as well as its cellular defense due to ABC (ATP-binding cassette) proteins activity against the xenobiotics. We analyzed two different ABC proteins activity pathways: P-gp, which is responsible for nonspecific substance efflux, and MRP that is associated with metals efflux. It was observed that the microalgae exposure to atrazine (90 nM) and copper (141 nM) has been considered cytotoxic. When contaminants were mixed, only the combination of both highest concentrations tested was cytotoxic. The P-gp blocker, verapamil, demonstrated that the contaminants tested caused proteins inhibition. However, the MK-571 (MRP blocker) did not block pump activity. There was an inverse relationship between ABC protein activity and cytotoxicity; non-cytotoxic conditions suggest increased activity of microalgae defense proteins.


Subject(s)
Antineoplastic Agents , Atrazine , Microalgae , Copper , Metals
SELECTION OF CITATIONS
SEARCH DETAIL
...