Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38063495

ABSTRACT

The impact of host diversity on the genotypic and phenotypic evolution of broad-spectrum pathogens is an open issue. Here, we used populations of the plant pathogen Ralstonia pseudosolanacearum that were experimentally evolved on five types of host plants, either belonging to different botanical families or differing in their susceptibility or resistance to the pathogen. We investigated whether changes in transcriptomic profiles, associated with or independent of genetic changes, could occur during the process of host adaptation, and whether transcriptomic reprogramming was dependent on host type. Genomic and transcriptomic variations were established for 31 evolved clones that showed better fitness in their experimental host than the ancestral clone. Few genomic polymorphisms were detected in these clones, but significant transcriptomic variations were observed, with a large number of differentially expressed genes (DEGs). In a very clear way, a group of genes belonging to the network of regulation of the bacterial virulence such as efpR, efpH or hrpB, among others, were deregulated in several independent evolutionary lineages and appeared to play a key role in the transcriptomic rewiring observed in evolved clones. A double hierarchical clustering based on the 400 top DEGs for each clone revealed 2 major patterns of gene deregulation that depend on host genotype, but not on host susceptibility or resistance to the pathogen. This work therefore highlights the existence of two major evolutionary paths that result in a significant reorganization of gene expression during adaptive evolution and underscore clusters of co-regulated genes associated with bacterial adaptation on different host lines.


Subject(s)
Ralstonia solanacearum , Humans , Virulence/genetics , Ralstonia solanacearum/genetics , Ralstonia/genetics , Gene Expression Profiling
2.
mSystems ; 8(4): e0008323, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37341493

ABSTRACT

All the strains grouped under the species Ralstonia solanacearum represent a species complex responsible for many diseases on agricultural crops throughout the world. The strains have different lifestyles and host range. Here, we investigated whether specific metabolic pathways contribute to strain diversification. To this end, we carried out systematic comparisons on 11 strains representing the diversity of the species complex. We reconstructed the metabolic network of each strain from its genome sequence and looked for the metabolic pathways differentiating the different reconstructed networks and, by extension, the different strains. Finally, we conducted an experimental validation by determining the metabolic profile of each strain with the Biolog technology. Results revealed that the metabolism is conserved between strains, with a core metabolism composed of 82% of the pan-reactome. The three species composing the species complex could be distinguished according to the presence/absence of some metabolic pathways, in particular, one involving salicylic acid degradation. Phenotypic assays revealed that the trophic preferences on organic acids and several amino acids such as glutamine, glutamate, aspartate, and asparagine are conserved between strains. Finally, we generated mutants lacking the quorum-sensing-dependent regulator PhcA in four diverse strains, and we showed that the phcA-dependent trade-off between growth and production of virulence factors is conserved across the R. solanacearum species complex. IMPORTANCE Ralstonia solanacearum is one of the most important threats to plant health worldwide, causing disease on a very large range of agricultural crops such as tomato or potato. Behind the R. solanacearum name are hundreds of strains with different host range and lifestyle, classified into three species. Studying the differences between strains allows to better apprehend the biology of the pathogens and the specificity of some strains. None of the published genomic comparative studies have focused on the metabolism of the strains so far. We developed a new bioinformatic pipeline to build high-quality metabolic networks and used a combination of metabolic modeling and high-throughput phenotypic Biolog microplates to look for the metabolic differences between 11 strains across the three species. Our study revealed that genes encoding enzymes are overall conserved, with few variations between strains. However, more variations were observed when considering substrate usage. These variations probably result from regulation rather than the presence or absence of enzymes in the genome.


Subject(s)
Ralstonia solanacearum , Ralstonia solanacearum/genetics , Virulence Factors , Cyanoacrylates/metabolism , Metabolic Networks and Pathways/genetics
3.
Mol Biol Evol ; 38(5): 1792-1808, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33306125

ABSTRACT

The evolutionary and adaptive potential of a pathogen is a key determinant for successful host colonization and proliferation but remains poorly known for most of the pathogens. Here, we used experimental evolution combined with phenotyping, genomics, and transcriptomics to estimate the adaptive potential of the bacterial plant pathogen Ralstonia solanacearum to overcome the quantitative resistance of the tomato cultivar Hawaii 7996. After serial passaging over 300 generations, we observed pathogen adaptation to within-plant environment of the resistant cultivar but no plant resistance breakdown. Genomic sequence analysis of the adapted clones revealed few genetic alterations, but we provide evidence that all but one were gain of function mutations. Transcriptomic analyses revealed that even if different adaptive events occurred in independently evolved clones, there is convergence toward a global rewiring of the virulence regulatory network as evidenced by largely overlapping gene expression profiles. A subset of four transcription regulators, including HrpB, the activator of the type 3 secretion system regulon and EfpR, a global regulator of virulence and metabolic functions, emerged as key nodes of this regulatory network that are frequently targeted to redirect the pathogen's physiology and improve its fitness in adverse conditions. Significant transcriptomic variations were also detected in evolved clones showing no genomic polymorphism, suggesting that epigenetic modifications regulate expression of some of the virulence network components and play a major role in adaptation as well.


Subject(s)
Adaptation, Biological/genetics , Ralstonia solanacearum/genetics , Regulon , Biological Evolution , Gain of Function Mutation , Genetic Fitness , Solanum lycopersicum/microbiology , Ralstonia solanacearum/pathogenicity , Transcriptome
4.
Environ Microbiol ; 21(8): 3140-3152, 2019 08.
Article in English | MEDLINE | ID: mdl-31209989

ABSTRACT

An evolution experiment with the bacterial plant pathogen Ralstonia solanacearum revealed that several adaptive mutations conferring enhanced fitness in plants arose in the efpR gene encoding a regulator of virulence and metabolic functions. In this study, we found that an efpR mutant systematically displays colonies with two morphotypes: the type S ('smooth', similar to the wild type) and the type EV ('efpR variant'). We demonstrated that the efpH gene, a homologue of efpR, plays a key role in the control of phenotypic heterogeneity, the ΔefpR-ΔefpH double mutant being stably locked into the EV type. Using mixed infection assays, we demonstrated that the type EV is metabolically more proficient than the type S and displays fitness gain in specific environments, whereas the type S has a better fitness into the plant environment. We provide evidence that this efpR-dependent phenotypic heterogeneity is a general feature of strains of the R. solanacearum species complex and could occur in natural conditions. This study highlights the potential role of phenotypic heterogeneity in this plant pathogen as an adaptive trait to changing environments.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Bacterial Proteins/genetics , Directed Molecular Evolution , Genes, Regulator , Solanum lycopersicum/microbiology , Mutation , Phenotype , Ralstonia solanacearum/pathogenicity , Virulence/genetics , Virulence Factors/genetics
5.
Microb Pathog ; 116: 273-278, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29408557

ABSTRACT

The global regulator PhcA controls numerous traits associated to virulence and bacterial proliferation in strains of the plant pathogen Ralstonia solanacearum species complex. Here, we conducted a genome-wide RNA sequencing study of the GMI1000 wild-type strain and a derived phcA mutant grown in complete medium. The PhcA regulon we identified is the largest regulon described to date in the R. solanacearum species complex with 1581 regulated genes, representing about 30% of the bacterial genome. Among these genes, 166 transcription regulators were identified including known regulators controlling major cellular functions such as the Type 3 secretion system and 27 novel regulators that were not identified in previous transcriptomic studies. This study highlights that PhcA controls other functions beside pathogenicity stricto sensu which participate to the global cell homeostasis (metabolism, energy storage). We then compared the PhcA regulon identified in complete medium to the recently published PhcA regulon obtained in planta. This comparison of the set of GMI1000 genes subjected to PhcA regulation in both conditions revealed 383 common genes. Among them, 326 (85%) had a similar PhcA dependent regulation pattern in complete medium and in planta, and 57 (15%) displayed an opposite regulation pattern. A large majority of the genes repressed by PhcA in complete medium but activated in planta belong to the HrpG-HrpB regulon, which represents a set of key genes required for R. solanacearum pathogenesis. This latter class of genes appears to be specifically induced by PhcA in the plant environment whereas PhcA represses their expression in complete medium. The large set of direct and indirect targets identified in this study will contribute to enrich our knowledge of the intricate regulatory network coordinating the expression of virulence and metabolic functions in the model plant pathogen R. solanacearum.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Bacterial , Ralstonia solanacearum/genetics , Transcription Factors/metabolism , Virulence Factors/biosynthesis , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Profiling , Regulon , Sequence Analysis, RNA , Transcription Factors/genetics , Virulence Factors/genetics
6.
Methods Mol Biol ; 1734: 223-239, 2018.
Article in English | MEDLINE | ID: mdl-29288458

ABSTRACT

In this chapter, we describe different methods for phenotyping strains or mutants of the bacterial wilt agent, Ralstonia solanacearum, on four different host plants: Arabidopsis thaliana, tomato (Solanum lycopersicum), tobacco (Nicotiana benthamiana), or Medicago truncatula. Methods for preparation of high volume or low volume inocula are first described. Then, we describe the procedures for inoculation of plants by soil drenching, stem injection or leaf infiltration, and scoring of the wilting symptoms development. Two methods for measurement of bacterial multiplication in planta are also proposed: (1) counting the bacterial colonies upon serial dilution plating and (2) determining the bacterial concentration using a qPCR approach. In this chapter, we also describe a competitive index assay to compare the fitness of two strains coinoculated in the same plant. Lastly, specific protocols describe in vitro and hydroponic inoculation procedures to follow disease development and bacterial multiplication in both the roots and aerial parts of the plant.


Subject(s)
Phenotype , Plant Diseases/microbiology , Ralstonia solanacearum/physiology , Solanum lycopersicum/microbiology , Medicago truncatula/microbiology , Plant Roots/microbiology , Plant Stems/microbiology , Nicotiana/microbiology
7.
Front Plant Sci ; 8: 504, 2017.
Article in English | MEDLINE | ID: mdl-28450872

ABSTRACT

Ralstonia solanacearum is an important soil-borne plant pathogen with broad geographical distribution and the ability to cause wilt disease in many agriculturally important crops. Genome sequencing of multiple R. solanacearum strains has identified both unique and shared genetic traits influencing their evolution and ability to colonize plant hosts. Previous research has shown that DNA methylation can drive speciation and modulate virulence in bacteria, but the impact of epigenetic modifications on the diversification and pathogenesis of R. solanacearum is unknown. Sequencing of R. solanacearum strains GMI1000 and UY031 using Single Molecule Real-Time technology allowed us to perform a comparative analysis of R. solanacearum methylomes. Our analysis identified a novel methylation motif associated with a DNA methylase that is conserved in all complete Ralstonia spp. genomes and across the Burkholderiaceae, as well as a methylation motif associated to a phage-borne methylase unique to R. solanacearum UY031. Comparative analysis of the conserved methylation motif revealed that it is most prevalent in gene promoter regions, where it displays a high degree of conservation detectable through phylogenetic footprinting. Analysis of hyper- and hypo-methylated loci identified several genes involved in global and virulence regulatory functions whose expression may be modulated by DNA methylation. Analysis of genome-wide modification patterns identified a significant correlation between DNA modification and transposase genes in R. solanacearum UY031, driven by the presence of a high copy number of ISrso3 insertion sequences in this genome and pointing to a novel mechanism for regulation of transposition. These results set a firm foundation for experimental investigations into the role of DNA methylation in R. solanacearum evolution and its adaptation to different plants.

8.
PLoS Pathog ; 12(12): e1006044, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27911943

ABSTRACT

Experimental evolution of the plant pathogen Ralstonia solanacearum, where bacteria were maintained on plant lineages for more than 300 generations, revealed that several independent single mutations in the efpR gene from populations propagated on beans were associated with fitness gain on bean. In the present work, novel allelic efpR variants were isolated from populations propagated on other plant species, thus suggesting that mutations in efpR were not solely associated to a fitness gain on bean, but also on additional hosts. A transcriptomic profiling and phenotypic characterization of the efpR deleted mutant showed that EfpR acts as a global catabolic repressor, directly or indirectly down-regulating the expression of multiple metabolic pathways. EfpR also controls virulence traits such as exopolysaccharide production, swimming and twitching motilities and deletion of efpR leads to reduced virulence on tomato plants after soil drenching inoculation. We studied the impact of the single mutations that occurred in efpR during experimental evolution and found that these allelic mutants displayed phenotypic characteristics similar to the deletion mutant, although not behaving as complete loss-of-function mutants. These adaptive mutations therefore strongly affected the function of efpR, leading to an expanded metabolic versatility that should benefit to the evolved clones. Altogether, these results indicated that EfpR is a novel central player of the R. solanacearum virulence regulatory network. Independent mutations therefore appeared during experimental evolution in the evolved clones, on a crucial node of this network, to favor adaptation to host vascular tissues through regulatory and metabolic rewiring.


Subject(s)
Genes, Plant/genetics , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/metabolism , Ralstonia solanacearum/pathogenicity , Virulence/genetics , Gene Expression Profiling , Mutation , Polymerase Chain Reaction , Virulence Factors/metabolism
9.
Phytopathology ; 105(12): 1529-44, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26368514

ABSTRACT

For the development of pathogen-informed breeding strategies, identifying the microbial genes involved in interactions with the plant is a critical step. To identify type III effector (T3E) repertoires associated with virulence of the bacterial wilt pathogen Ralstonia solanacearum on Solanaceous crops, we used an original association genetics approach combining DNA microarray data and pathogenicity data on resistant eggplant, pepper, and tomato accessions. From this first screen, 25 T3Es were further full-length polymerase chain reaction-amplified within a 35-strain field collection, to assess their distribution and allelic diversity. Six T3E repertoire groups were identified, within which 11 representative strains were chosen to challenge the bacterial wilt-resistant egg plants 'Dingras multiple Purple' and 'AG91-25', and tomato Hawaii 7996. The virulence or avirulence phenotypes could not be explained by specific T3E repertoires, but rather by individual T3E genes. We identified seven highly avirulence-associated genes, among which ripP2, primarily referenced as conferring avirulence to Arabidopsis thaliana. Interestingly, no T3E was associated with avirulence to both egg-plants. Highly virulence-associated genes were also identified: ripA5_2, ripU, and ripV2. This study should be regarded as a first step toward investigating both avirulence and virulence function of the highlighted genes, but also their evolutionary dynamics in natural R. solanacearum populations.


Subject(s)
Ralstonia solanacearum/pathogenicity , Solanum lycopersicum/microbiology , Solanum melongena/microbiology , Comparative Genomic Hybridization , Phenotype , Ralstonia solanacearum/genetics , Virulence
10.
Mol Biol Evol ; 31(11): 2913-28, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25086002

ABSTRACT

Ralstonia solanacearum, the causal agent of a lethal bacterial wilt plant disease, infects an unusually wide range of hosts. These hosts can further be split into plants where R. solanacearum is known to cause disease (original hosts) and those where this bacterium can grow asymptomatically (distant hosts). Moreover, this pathogen is able to adapt to many plants as supported by field observations reporting emergence of strains with enlarged pathogenic properties. To investigate the genetic bases of host adaptation, we conducted evolution experiments by serial passages of a single clone of the pathogen on three original and two distant hosts over 300 bacterial generations and then analyzed the whole-genome of nine evolved clones. Phenotypic analysis of the evolved clones showed that the pathogen can increase its fitness on both original and distant hosts although the magnitude of fitness increase was greater on distant hosts. Only few genomic modifications were detected in evolved clones compared with the ancestor but parallel evolutionary changes in two genes were observed in independent evolved populations. Independent mutations in the regulatory gene efpR were selected for in three populations evolved on beans, a distant host. Reverse genetic approaches confirmed that these mutations were associated with fitness gain on bean plants. This work provides a first step toward understanding the within-host evolutionary dynamics of R. solanacearum during infection and identifying bacterial genes subjected to in planta selection. The discovery of EfpR as a determinant conditioning host adaptation of the pathogen illustrates how experimental evolution coupled with whole-genome sequencing is a potent tool to identify novel molecular players involved in central life-history traits.


Subject(s)
Adaptation, Physiological/genetics , Genes, Bacterial , Genes, Regulator , Genome, Bacterial , Ralstonia solanacearum/genetics , Ralstonia solanacearum/pathogenicity , Brassicaceae/microbiology , Clone Cells , Fabaceae/microbiology , Geraniaceae/microbiology , Host Specificity , Host-Pathogen Interactions , Mutation , Plant Diseases/microbiology , Ralstonia solanacearum/metabolism , Selection, Genetic , Solanaceae/microbiology , Virulence
11.
Mol Plant Pathol ; 14(7): 651-62, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23718203

ABSTRACT

UNLABELLED: Ralstonia solanacearum is a soil-borne bacterium causing the widespread disease known as bacterial wilt. Ralstonia solanacearum is also the causal agent of Moko disease of banana and brown rot of potato. Since the last R. solanacearum pathogen profile was published 10 years ago, studies concerning this plant pathogen have taken a genomic and post-genomic direction. This was pioneered by the first sequenced and annotated genome for a major plant bacterial pathogen and followed by many more genomes in subsequent years. All molecular features studied now have a genomic flavour. In the future, this will help in connecting the classical field of pathology and diversity studies with the gene content of specific strains. In this review, we summarize the recent research on this bacterial pathogen, including strain classification, host range, pathogenicity determinants, regulation of virulence genes, type III effector repertoire, effector-triggered immunity, plant signalling in response to R. solanacearum, as well as a review of different new pathosystems. TAXONOMY: Bacteria; Proteobacteria; ß subdivision; Ralstonia group; genus Ralstonia. DISEASE SYMPTOMS: Ralstonia solanacearum is the agent of bacterial wilt of plants, characterized by a sudden wilt of the whole plant. Typically, stem cross-sections will ooze a slimy bacterial exudate. In the case of Moko disease of banana and brown rot of potato, there is also visible bacterial colonization of banana fruit and potato tuber. DISEASE CONTROL: As a soil-borne pathogen, infected fields can rarely be reused, even after rotation with nonhost plants. The disease is controlled by the use of resistant and tolerant plant cultivars. The prevention of spread of the disease has been achieved, in some instances, by the application of strict prophylactic sanitation practices. USEFUL WEBSITES: Stock centre: International Centre for Microbial Resources-French Collection for Plant-associated Bacteria CIRM-CFBP, IRHS UMR 1345 INRA-ACO-UA, 42 rue Georges Morel, 49070 Beaucouzé Cedex, France, http://www.angers-nantes.inra.fr/cfbp/. Ralstonia Genome browser: https://iant.toulouse.inra.fr/R.solanacearum. GMI1000 insertion mutant library: https://iant.toulouse.inra.fr/R.solanacearumGMI1000/GenomicResources. MaGe Genome Browser: https://www.genoscope.cns.fr/agc/microscope/mage/viewer.php?


Subject(s)
Genomics , Plants/microbiology , Ralstonia solanacearum/physiology , Host Specificity , Phylogeny , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/pathogenicity
12.
New Phytol ; 192(4): 976-987, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21902695

ABSTRACT

Type III effectors from phytopathogenic bacteria exhibit a high degree of functional redundancy, hampering the evaluation of their precise contribution to pathogenicity. This is illustrated by the GALA type III effectors from Ralstonia solanacearum, which have been shown to be collectively, but not individually, required for disease on Arabidopsis thaliana and tomato. We investigated evolution, redundancy and diversification of this family in order to understand the individual contribution of the GALA effectors to pathogenicity. From sequences available, we reconstructed GALA phylogeny and performed selection studies. We then focused on the GALAs from the reference strain GMI1000 to examine their ability to suppress plant defense responses and contribution to pathogenicity on three different host plants: A. thaliana, tomato (Lycopersicum esculentum) and eggplant (Solanum melongena). The GALA family is well conserved within R. solanacearum species. Patterns of selection detected on some GALA family members, together with experimental results, show that GALAs underwent functional diversification. We conclude that functional divergence of the GALA family likely accounts for its remarkable conservation during R. solanacearum evolution and could contribute to R. solanacearum's adaptation on several host plants.


Subject(s)
Adaptation, Physiological , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Plants/microbiology , Ralstonia solanacearum/metabolism , Arabidopsis , Conserved Sequence , Solanum lycopersicum/microbiology , Mutation/genetics , Phylogeny , Ralstonia solanacearum/pathogenicity , Recombination, Genetic/genetics , Selection, Genetic , Sequence Homology, Amino Acid , Solanum melongena/microbiology , Species Specificity
13.
Mol Plant Microbe Interact ; 24(4): 497-505, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21190441

ABSTRACT

Horizontal gene transfer (HGT) is a major driving force of evolution and is also likely to play an important role in the threatening emergence of novel pathogens, especially if it involves distantly related strains with substantially different pathogenicity. In this study, the impact of natural transformation on pathogenicity in six strains belonging to the four phylotypes of the plant-pathogenic bacterium Ralstonia solanacearum was investigated. The study focused on genomic regions that vary between donor and recipient strains and that carry genes involved in pathogenicity such as type III effectors. First, strains from R. solanacearum species complex were naturally transformed with heterologous genomic DNA. Transferred DNA regions were then determined by comparative genomic hybridization and polymerase chain reaction sequencing. We identified three transformant strains that acquired large DNA regions of up to 80 kb. In one case, strain Psi07 (phylotype IV tomato isolate) acquired 39.4 kb from GMI1000 (phylotype I tomato isolate). Investigations revealed that i) 24.4 kb of the acquired region contained 20 new genes, ii) an allelic exchange of 12 genes occurred, and iii) 27 genes (33.4 kb) formerly present in Psi07 were lost. Virulence tests with the three transformants revealed a significant increase in the aggressiveness of BCG20 over its Psi07 parent on tomato. These findings demonstrate the potential importance of HGT in the pathogenic evolution of R. solanacearum strains and open new avenues for studying pathogen emergence.


Subject(s)
Gene Transfer, Horizontal , Ralstonia solanacearum/genetics , Ralstonia solanacearum/pathogenicity , Solanum lycopersicum/microbiology , Transformation, Genetic , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Evolution, Molecular , Genes, Bacterial/genetics , Genetic Variation , Genome, Bacterial , Oligonucleotide Array Sequence Analysis , Phylogeny , Plasmids/genetics , Polymerase Chain Reaction , Ralstonia solanacearum/classification , Sequence Analysis, DNA , Virulence/genetics
14.
Mol Plant Microbe Interact ; 23(9): 1197-205, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20687809

ABSTRACT

Ralstonia solanacearum, the causal agent of bacterial wilt, is a soil bacterium which can naturally infect a wide range of host plants through the root system. Pathogenicity relies on a type III secretion system which delivers a large set of approximately 75 type III effectors (T3E) into plant cells. On several plants, pathogenicity assays based on quantification of wilting symptoms failed to detect a significant contribution of R. solanacearum T3E in this process, thus revealing the collective effect of T3E in pathogenesis. We developed a mixed infection-based method with R. solanacearum to monitor bacterial fitness in plant leaf tissues as a virulence assay. This accurate and sensitive assay provides evidence that growth defects can be detected for T3E mutants: we identified 12 genes contributing to bacterial fitness in eggplant leaves and 3 of them were also implicated in bacterial fitness on two other hosts, tomato and bean. Contribution to fitness of several T3E appears to be host specific, and we show that some known avirulence determinants such as popP2 or avrA do provide competitive advantages on some susceptible host plants. In addition, this assay revealed that the efe gene, which directs the production of ethylene by bacteria in plant tissues, and hdfB, involved in the biosynthesis of the secondary metabolite 3-hydroxy-oxindole, are also required for optimal growth in plant leaf tissues.


Subject(s)
Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Ralstonia solanacearum/pathogenicity , Solanum lycopersicum/microbiology , Solanum melongena/microbiology , Gene Expression Regulation, Bacterial , Mutation , Plant Leaves/microbiology , Soil Microbiology
15.
BMC Genomics ; 11: 379, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20550686

ABSTRACT

BACKGROUND: The Ralstonia solanacearum species complex includes thousands of strains pathogenic to an unusually wide range of plant species. These globally dispersed and heterogeneous strains cause bacterial wilt diseases, which have major socio-economic impacts. Pathogenicity is an ancestral trait in R. solanacearum and strains with high genetic variation can be subdivided into four phylotypes, correlating to isolates from Asia (phylotype I), the Americas (phylotype IIA and IIB), Africa (phylotype III) and Indonesia (phylotype IV). Comparison of genome sequences strains representative of this phylogenetic diversity can help determine which traits allow this bacterium to be such a pathogen of so many different plant species and how the bacteria survive in many different habitats. RESULTS: The genomes of three tomato bacterial wilt pathogens, CFBP2957 (phy. IIA), CMR15 (phy. III) and PSI07 (phy. IV) were sequenced and manually annotated. These genomes were compared with those of three previously sequenced R. solanacearum strains: GMI1000 (tomato, phy. I), IPO1609 (potato, phy. IIB), and Molk2 (banana, phy. IIB). The major genomic features (size, G+C content, number of genes) were conserved across all of the six sequenced strains. Despite relatively high genetic distances (calculated from average nucleotide identity) and many genomic rearrangements, more than 60% of the genes of the megaplasmid and 70% of those on the chromosome are syntenic. The three new genomic sequences revealed the presence of several previously unknown traits, probably acquired by horizontal transfers, within the genomes of R. solanacearum, including a type IV secretion system, a rhi-type anti-mitotic toxin and two small plasmids. Genes involved in virulence appear to be evolving at a faster rate than the genome as a whole. CONCLUSIONS: Comparative analysis of genome sequences and gene content confirmed the differentiation of R. solanacearum species complex strains into four phylotypes. Genetic distances between strains, in conjunction with CGH analysis of a larger set of strains, revealed differences great enough to consider reclassification of the R. solanacearum species complex into three species. The data are still too fragmentary to link genomic classification and phenotypes, but these new genome sequences identify a pan-genome more representative of the diversity in the R. solanancearum species complex.


Subject(s)
Evolution, Molecular , Genetic Variation , Genome, Bacterial/genetics , Ralstonia solanacearum/genetics , Solanum lycopersicum/microbiology , Comparative Genomic Hybridization , Conserved Sequence , Genes, Bacterial/genetics , Genomic Islands/genetics , Oligonucleotide Array Sequence Analysis , Phylogeny , Plasmids/genetics , Ralstonia solanacearum/metabolism , Virulence Factors/genetics
16.
ISME J ; 3(5): 549-62, 2009 May.
Article in English | MEDLINE | ID: mdl-19242532

ABSTRACT

The plant pathogenic Betaproteobacterium Ralstonia solanacearum is a complex species in that most of the strains share the common characteristic of being naturally transformable. In this study, we used a new approach based on comparative genomic hybridization (CGH) on microarrays to investigate the extent of horizontal gene transfers (HGTs) between different strains of R. solanacearum. Recipient strains from phylotypes I, II and III were naturally transformed in vitro by genomic DNA from the GMI1000 reference strain (phylotype I) and the resulting DNAs were hybridized on a microarray representative of the 5120 predicted genes from the GMI1000 strain. In addition to transfer of the antibiotic resistance marker, in 8 of the 16 tested transformants, CGH on microarrays detected other transferred GMI1000 genes and revealed their number, category, function and localization along the genome. We showed that DNA blocks up to 30 kb and 33 genes could be integrated during a single event. Most of these blocks flanked the marker gene DNA but, interestingly, multiple DNA acquisitions along the genome also occurred in a single recombinant clone in one transformation experiment. The results were confirmed by PCR amplification, cloning and sequencing and Southern blot hybridization. This represents the first comprehensive identification of gene acquisitions and losses along the genome of the recipient bacterial strain during natural transformation experiments. In future studies, this strategy should help to answer many questions related to HGT mechanisms.


Subject(s)
Comparative Genomic Hybridization , Gene Transfer, Horizontal , Genome, Bacterial , Ralstonia solanacearum/genetics , DNA, Bacterial/genetics , Microarray Analysis , Recombination, Genetic
17.
J Bacteriol ; 189(2): 377-87, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17085551

ABSTRACT

In the present study, we investigated the gene distribution among strains of the highly polymorphic plant pathogenic beta-proteobacterium Ralstonia solanacearum, paying particular attention to the status of known or candidate pathogenicity genes. Based on the use of comparative genomic hybridization on a pangenomic microarray for the GMI1000 reference strain, we have defined the conditions that allowed comparison of the repertoires of genes among a collection of 18 strains that are representative of the biodiversity of the R. solanacearum species. This identified a list of 2,690 core genes present in all tested strains. As a corollary, a list of 2,338 variable genes within the R. solanacearum species has been defined. The hierarchical clustering based on the distribution of variable genes is fully consistent with the phylotype classification that was previously defined from the nucleotide sequence analysis of four genes. The presence of numerous pathogenicity-related genes in the core genome indicates that R. solanacearum is an ancestral pathogen. The results establish the long coevolution of the two replicons that constitute the bacterial genome. We also demonstrate the clustering of variable genes in genomic islands. Most genomic islands are included in regions with an alternative codon usage, suggesting that they originate from acquisition of foreign genes through lateral gene transfers. Other genomic islands correspond to genes that have the same base composition as core genes, suggesting that they either might be ancestral genes lost by deletion in certain strains or might originate from horizontal gene transfers.


Subject(s)
Genome, Bacterial/genetics , Phylogeny , Plants/microbiology , Ralstonia solanacearum/genetics , Chromosome Mapping , Chromosomes, Bacterial/genetics , Cluster Analysis , Evolution, Molecular , Genes, Bacterial/genetics , Genetic Variation , Genomic Islands/genetics , Multigene Family/genetics , Nucleic Acid Hybridization/methods , Oligonucleotide Array Sequence Analysis , Ralstonia solanacearum/classification , Ralstonia solanacearum/pathogenicity
18.
Mycorrhiza ; 15(3): 167-77, 2005 May.
Article in English | MEDLINE | ID: mdl-15322964

ABSTRACT

The ectomycorrhizal (ECM) fungus Hebeloma cylindrosporum is an appropriate model to study the intraspecific functional diversity of ECM fungi in forest ecosystems. Numerous metabolic genes, specifically genes related to nitrogen assimilation, have been characterised for this species and the spatial and temporal structures of its natural populations have been extensively worked out. In this paper, we reveal the extent to which intraspecific variation exists within this fungus for the ability to use organic nitrogen, an important functional characteristic of ECM fungi. In addition to ammonium and nitrate, H. cylindrosporum can use at least 13 different amino acids out of 21 tested as sole nitrogen source, as well as urea and proteins. By screening 22 genetically different wild type haploid strains we identified obvious differences in use of six nitrogen sources: alanine, glycine, phenylalanine, serine, bovine serum albumin and gelatine. Of the 22 haploid strains, 11 could not use at least one of these six nitrogen sources. The inability of some haploid strains to use a nitrogen source was found to be a recessive character. Nevertheless, obvious differences in use of the four amino acids tested were also measured between wild type dikaryons colonising a common Pinus pinaster root system. This study constitutes the basis for future experiments that will address the consequences of the functional diversity of an ECM fungus on the functioning of the ECM symbiosis under natural conditions.


Subject(s)
Agaricales/metabolism , Mycorrhizae/metabolism , Nitrogen/metabolism , Amino Acids/metabolism , Biomass , Mycelium/growth & development , Mycelium/metabolism , Species Specificity
19.
New Phytol ; 161(2): 539-547, 2004 Feb.
Article in English | MEDLINE | ID: mdl-33873517

ABSTRACT

• In most studies, the distribution of the mycelia of ectomycorrhizal fungi in forest soils has been inferred from areas occupied by fruit bodies. Here, we investigated the below-ground spatio-temporal distribution of Hebeloma cylindrosporum by polymerase chain reaction quantification of a specific DNA sequence present in DNA extracted from soil. • Soil samples were collected in a Pinus pinaster stand located in a campsite where fruit bodies of H. cylindrosporum had been mapped from 1990 to 2000. • In samples collected underneath fruit bodies, DNA of H. cylindrosporum was always detected in large amounts. However, this DNA was often undetectable in the absence of fruit body even 1 yr after their disappearance. This result was supported by the failure to identify mycorrhizas of this species on seedlings planted in soil samples collected in places where fruit bodies were present 1 yr before sampling. • This pattern suggests a recolonization of the site each year by H. cylindrosporum basidiospores in 'receptive' patches of ground created either by the local elimination of competitors or by local nutrient enrichments, which could frequently occur in a campsite. Our results demonstrate that an ectomycorrhizal species can be completely eliminated from the roots within 1 yr and does not necessarily contribute to the next generation of mycorrhizas.

20.
FEMS Microbiol Ecol ; 42(3): 477-86, 2002 Dec 01.
Article in English | MEDLINE | ID: mdl-19709306

ABSTRACT

In natural forest ecosystems several ectomycorrhizal fungal species cohabit on host plant root systems. To evaluate the ecological and functional impact of each species, it is necessary to appreciate the distribution and abundance of its mycelia in the soil. We developed a competitive PCR (cPCR) method for the basidiomycete Hebeloma cylindrosporum that allows quantification of its DNA in complex DNA mixtures extracted directly from soil samples. The target sequence chosen for the cPCR analysis was a 533-bp fragment of the nuclear ribosomal intergenic spacer, amplified using two species-specific primers. The detection threshold of the cPCR protocol developed was 0.03 pg of genomic DNA. This method was applied to soil samples collected from beneath and at various distances from a group of fruit bodies in a Pinus pinaster forest stand. The results revealed that H. cylindrosporum below-ground biomass was concentrated directly underneath the fruit bodies or very close to them, while no DNA of this species could be detected in soil samples collected at more than 50 cm away. In the vicinity of fruit bodies, H. cylindrosporum soil DNA concentration varied considerably (between 10 and 0.07 ng g soil(-1)) and decreased sharply with increased distance from the fruit bodies. This work demonstrates the potential of competitive quantitative PCR for the study of the distribution, abundance and persistence of the mycelia of an ectomycorrhizal fungal species in soil.

SELECTION OF CITATIONS
SEARCH DETAIL
...