Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(15): 18639-18652, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37022100

ABSTRACT

The application of engineered biomaterials for wound healing has been pursued since the beginning of tissue engineering. Here, we attempt to apply functionalized lignin to confer antioxidation to the extracellular microenvironments of wounds and to deliver oxygen from the dissociation of calcium peroxide for enhanced vascularization and healing responses without eliciting inflammatory responses. Elemental analysis showed 17 times higher quantity of calcium in the oxygen-releasing nanoparticles. Lignin composites including the oxygen-generating nanoparticles released around 700 ppm oxygen per day at least for 7 days. By modulating the concentration of the methacrylated gelatin, we were able to maintain the injectability of lignin composite precursors and the stiffness of lignin composites suitable for wound healing after photo-cross-linking. In situ formation of lignin composites with the oxygen-releasing nanoparticles enhanced the rate of tissue granulation, the formation of blood vessels, and the infiltration of α-smooth muscle actin+ fibroblasts into the wounds over 7 days. At 28 days after surgery, the lignin composite with oxygen-generating nanoparticles remodeled the collagen architecture, resembling the basket-weave pattern of unwounded collagen with minimal scar formation. Thus, our study shows the potential of functionalized lignin for wound-healing applications requiring balanced antioxidation and controlled release of oxygen for enhanced tissue granulation, vascularization, and maturation of collagen.


Subject(s)
Antioxidants , Lignin , Antioxidants/pharmacology , Lignin/pharmacology , Oxygen , Wound Healing , Collagen
2.
ACS Biomater Sci Eng ; 7(6): 2212-2218, 2021 06 14.
Article in English | MEDLINE | ID: mdl-33938742

ABSTRACT

We report the use of phenolic functional groups of lignosulfonate to impart antioxidant properties and the cell binding domains of gelatin to enhance cell adhesion for poly(ethylene glycol) (PEG)-based scaffolds. Chemoselective thiol-ene chemistry was utilized to form composites with thiolated lignosulfonate (TLS) and methacrylated fish gelatin (fGelMA). Antioxidant properties of TLS were not altered after thiolation and the levels of antioxidation were comparable to those of L-ascorbic acid. PEG-fGelMA-TLS composites significantly reduced the difference in COL1A1, ACTA2, TGFB1, and HIF1A genes between high-scarring and low-scarring hdFBs, providing the potential utility of TLS to attenuate fibrotic responses.


Subject(s)
Gelatin , Lignin , Animals , Fibroblasts , Humans , Hydrogels , Polyethylene Glycols
SELECTION OF CITATIONS
SEARCH DETAIL
...