Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
medRxiv ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38826318

ABSTRACT

Background: Angiotensin (Ang)-II impairs the function of the antihypertensive enzyme ACE2 by promoting its internalization, ubiquitination and degradation thus contributing to hypertension. However, few ACE2 ubiquitination partners have been identified and their role in hypertension remains unknown. Methods: Proteomics and bioinformatic analysis were used to identify ACE2 ubiquitination partners in the brain, heart, and kidney from Ang-II-infused C57BL6/J mice from both sexes and validated the interaction between UBR1 and ACE2 in cells. Central and peripheral UBR1 knockdown was then performed in male mice to investigate its role in the maintenance of hypertension. Results: Proteomics analysis from hypothalamus identified UBR1 as a potential E3 ligase promoting ACE2 ubiquitination. Enhanced UBR1 expression, associated with ACE2 reduction, was confirmed in various tissues from hypertensive male mice and human samples. Treatment of endothelial and smooth muscle cells with testosterone, but not 17ß-estradiol, confirmed a sex-specific regulation of UBR1. In vivo silencing of UBR1 using chronic administration of small interference RNA resulted in the restoration of ACE2 levels in hypertensive males. A transient decrease in blood pressure following intracerebroventricular, but not systemic, infusion was also observed. Interestingly, UBR1 knockdown increased the brain activation of Nedd4-2, an E3 ligase promoting ACE2 ubiquitination and reduced expression of SGK1, the kinase inactivating Nedd4-2. Conclusions: These data demonstrate that UBR1 is a novel ubiquitin ligase targeting ACE2 in hypertension. UBR1 and Nedd4-2 E3 ligases appear to work synergistically to ubiquitinate ACE2. Targeting of these ubiquitin ligases may represent a novel strategy to restore ACE2 compensatory activity in hypertension.

2.
Drug Metab Dispos ; 51(9): 1196-1206, 2023 09.
Article in English | MEDLINE | ID: mdl-37349115

ABSTRACT

Liver cytochrome P450s (CYPs) of the endoplasmic reticulum (ER) are involved in the metabolism of exogenous and endogenous chemicals. The ER is not uniform, but possesses ordered lipid microdomains containing higher levels of saturated fatty acids, sphingomyelin, and cholesterol and disordered regions containing higher levels of polyunsaturated fatty acid chains. The various forms of drug-metabolizing P450s partition to either the ordered or disordered lipid microdomains with different degrees of specificity. P450s readily form complexes with ER-resident proteins, including other forms of P450. This study aims to ascertain whether lipid microdomain localization influences protein-P450 interactions in rat liver microsomes. Thus, liver microsomes were co-immunoprecipitated with CYP1A2-specific and CYP3A-specific antibodies, and the co-immunoprecipitating proteins were identified by liquid chromatography mass spectrometry proteomic analysis. These two P450s preferentially partition to ordered and disordered microdomains, respectively. More than 100 proteins were co-immunoprecipitated with each P450. Segregation of proteins into different microdomains did not preclude their interaction. However, CYP3A interacted broadly with proteins from ordered microdomains, whereas CYP1A2 reacted with a limited subset of these proteins. This is consistent with the concept of lipid raft heterogeneity and may indicate that CYP1A2 is targeted to a specific type of lipid raft. Although many of the interacting proteins for both P450s were other-drug metabolizing enzymes, other interactions were also evident. The consistent CYP3A binding partners were predominantly involved in phase I/II drug metabolism; however, CYP1A2 interacted not only with xenobiotic metabolizing enzymes, but also with enzymes involved in diverse cellular responses such as ER stress and protein folding. SIGNIFICANCE STATEMENT: This work describes the protein interactomes in rat liver microsomes of two important cytochromes P450s (CYP1A2 and CYP3A) in drug metabolism and describes the relationship of the interacting proteins to lipid microdomain distribution.


Subject(s)
Cytochrome P-450 CYP1A2 , Microsomes, Liver , Rats , Animals , Cytochrome P-450 CYP1A2/metabolism , Microsomes, Liver/metabolism , Cytochrome P-450 CYP3A/metabolism , Proteomics , Cytochrome P-450 Enzyme System/metabolism , Lipids
3.
Cardiovasc Res ; 119(11): 2130-2141, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37161607

ABSTRACT

AIMS: Angiotensin-converting enzyme 2 (ACE2) is a critical component of the compensatory renin-angiotensin system that is down-regulated during the development of hypertension, possibly via ubiquitination. However, little is known about the mechanisms involved in ACE2 ubiquitination in neurogenic hypertension. This study aimed at identifying ACE2 ubiquitination partners, establishing causal relationships and clinical relevance, and testing a gene therapy strategy to mitigate ACE2 ubiquitination in neurogenic hypertension. METHODS AND RESULTS: Bioinformatics and proteomics were combined to identify E3 ubiquitin ligases associated with ACE2 ubiquitination in chronically hypertensive mice. In vitro gain/loss of function experiments assessed ACE2 expression and activity to validate the interaction between ACE2 and the identified E3 ligase. Mutation experiments were further used to generate a ubiquitination-resistant ACE2 mutant (ACE2-5R). Optogenetics, blood pressure telemetry, pharmacological blockade of GABAA receptors in mice expressing ACE2-5R in the bed nucleus of the stria terminalis (BNST), and capillary western analysis were used to assess the role of ACE2 ubiquitination in neurogenic hypertension. Ubiquitination was first validated as leading to ACE2 down-regulation, and Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) was identified as a E3 ligase up-regulated in hypertension and promoting ACE2 ubiquitination. Mutation of lysine residues in the C-terminal of ACE2 was associated with increased activity and resistance to angiotensin (Ang)-II-mediated degradation. Mice transfected with ACE2-5R in the BNST exhibited enhanced GABAergic input to the paraventricular nucleus (PVN) and a reduction in hypertension. ACE2-5R expression was associated with reduced Nedd4-2 levels in the BNST. CONCLUSION: Our data identify Nedd4-2 as the first E3 ubiquitin ligase involved in ACE2 ubiquitination in Ang-II-mediated hypertension. We demonstrate the pivotal role of ACE2 on GABAergic neurons in the maintenance of an inhibitory tone to the PVN and the regulation of pre-sympathetic activity. These findings provide a new working model where Nedd4-2 could contribute to ACE2 ubiquitination, leading to the development of neurogenic hypertension and highlighting potential novel therapeutic strategies.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Animals , Mice , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Up-Regulation
4.
Viruses ; 15(3)2023 03 21.
Article in English | MEDLINE | ID: mdl-36992502

ABSTRACT

Despite the suppression of human immunodeficiency virus (HIV) replication by combined antiretroviral therapy (cART), 50-60% of HIV-infected patients suffer from HIV-associated neurocognitive disorders (HAND). Studies are uncovering the role of extracellular vesicles (EVs), especially exosomes, in the central nervous system (CNS) due to HIV infection. We investigated links among circulating plasma exosomal (crExo) proteins and neuropathogenesis in simian/human immunodeficiency virus (SHIV)-infected rhesus macaques (RM) and HIV-infected and cART treated patients (Patient-Exo). Isolated EVs from SHIV-infected (SHIV-Exo) and uninfected (CTL-Exo) RM were predominantly exosomes (particle size < 150 nm). Proteomic analysis quantified 5654 proteins, of which 236 proteins (~4%) were significantly, differentially expressed (DE) between SHIV-/CTL-Exo. Interestingly, different CNS cell specific markers were abundantly expressed in crExo. Proteins involved in latent viral reactivation, neuroinflammation, neuropathology-associated interactive as well as signaling molecules were expressed at significantly higher levels in SHIV-Exo than CTL-Exo. However, proteins involved in mitochondrial biogenesis, ATP production, autophagy, endocytosis, exocytosis, and cytoskeleton organization were significantly less expressed in SHIV-Exo than CTL-Exo. Interestingly, proteins involved in oxidative stress, mitochondrial biogenesis, ATP production, and autophagy were significantly downregulated in primary human brain microvascular endothelial cells exposed with HIV+/cART+ Patient-Exo. We showed that Patient-Exo significantly increased blood-brain barrier permeability, possibly due to loss of platelet endothelial cell adhesion molecule-1 protein and actin cytoskeleton structure. Our novel findings suggest that circulating exosomal proteins expressed CNS cell markers-possibly associated with viral reactivation and neuropathogenesis-that may elucidate the etiology of HAND.


Subject(s)
HIV Infections , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , Macaca mulatta , HIV Infections/complications , Simian Acquired Immunodeficiency Syndrome/complications , Endothelial Cells , Proteomics , Disease Models, Animal , Adenosine Triphosphate , Viral Load
6.
Oncogene ; 41(47): 5076-5091, 2022 11.
Article in English | MEDLINE | ID: mdl-36243802

ABSTRACT

Treatment of patients with triple-negative breast cancer (TNBC) has been challenging due to the absence of well-defined molecular targets and the highly invasive and proliferative nature of TNBC cells. Current treatments against TNBC have shown little promise due to high recurrence rate in patients. Consequently, there is a pressing need for novel and efficacious therapies against TNBC. Here, we report the discovery of a novel small molecule inhibitor (NSC33353) with potent anti-tumor activity against TNBC cells. The anti-proliferative effects of this small molecule inhibitor were determined using 2D and 3D cell proliferation assays. We found that NSC33353 significantly reduces the proliferation of TNBC cells in these assays. Using proteomics, next generation sequencing (NGS), and gene enrichment analysis, we investigated global regulatory pathways affected by this compound in TNBC cells. Proteomics data indicate a significant metabolic reprograming affecting both glycolytic enzymes and energy generation through oxidative phosphorylation. Subsequently, using metabolic (Seahorse) and enzymatic assays, we validated our proteomics and NGS analysis findings. Finally, we showed the inhibitory and anti-tumor effects of this small molecule in vitro and confirmed its inhibitory activity in vivo. Doxorubicin is one of the most effective agents in the treatment of TNBC and resistance to this drug has been a major problem. We show that the combination of NSC33353 and doxorubicin suppresses the growth of TNBC cells synergistically, suggesting that NSC33353 enhances TNBC sensitivity to doxorubicin. In summary, our data indicate that the small molecule inhibitor, NSC33353, exhibits anti-tumor activity in TNBC cells, and works in a synergistic fashion with a well-known chemotherapeutic agent.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Apoptosis , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Xenograft Model Antitumor Assays
7.
Biomed Pharmacother ; 155: 113728, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152410

ABSTRACT

BACKGROUND: Nutraceutical foods, like walnuts which are rich in immunonutrients, can have medicinal benefits. Dietary walnuts have been shown to slow or prevent tumor growth in mice genetically programmed to grow breast or prostate tumors. This study investigated whether walnuts could exert the same preventable effect in a transplantable carcinoma rat model. METHODS: Eighteen rats were randomly fed a diet containing walnuts (10% of food by weight), and 36 were fed a diet without walnuts (control) for 21 days. On day 22, 18 control diet rats were switched to the walnut diet. All other animals remained on their same diet. Within each diet group, 6 rats were implanted with the Ward colon carcinoma (TB), and 12 were sham-operated. Five days later, 6 sham-operated animals were weight-matched to a TB and then pair-fed for the remainder of the study. The remaining 6 sham-operated, or non-tumor-bearing rats, were ad-lib fed. RESULTS: The tissue of the walnut-eating rats showed higher omega-3 fatty acid (immunonutrient) content which did not slow or prevent tumor growth or the loss of lean and fat mass typical of this TB model. In addition, blood glucose, insulin, IGF-1, and adiponectin levels were significantly lower in the TB, demonstrating metabolic dysregulation. Again, these changes were unaltered by consuming walnuts. Plasma proteomics identified six proteins elevated in the TB, but none could be connected with the observed metabolic dysregulation. CONCLUSION: Although walnuts' rich immunonutrient content prevented tumor growth in genetically programmed mice models, there was no effect in this model.


Subject(s)
Carcinoma , Fatty Acids, Omega-3 , Insulins , Juglans , Animals , Male , Rats , Adiponectin , Biomarkers , Blood Glucose , Cachexia , Diet , Dietary Supplements , Insulin-Like Growth Factor I/metabolism
8.
Drug Metab Dispos ; 50(4): 374-385, 2022 04.
Article in English | MEDLINE | ID: mdl-35094979

ABSTRACT

The proteomes of ordered and disordered lipid microdomains in rat liver microsomes from control and phenobarbital (PB)-treated rats were determined after solubilization with Brij 98 and analyzed by tandem mass tag (TMT)-liquid chromatography-mass spectrometry (LC-MS). This allowed characterization of the liver microsomal proteome and the effects of phenobarbital-mediated induction, focusing on quantification of the relative levels of the drug-metabolizing enzymes._The microsomal proteome from control rats was represented by 333 (23%) proteins from ordered lipid microdomains, 517 (36%) proteins from disordered lipid domains, and 587 (41%) proteins that uniformly distributed between lipid microdomains. Most enzymes related to drug metabolism were mainly localized in disordered lipid microdomains. However, cytochrome P450 (CYP) 1A2, multiple forms of CYP2D, and several forms of UDP glucuronosyltransferases (UGT) 1A1 and 1A6) localized to ordered lipid microdomains. Other drug-metabolizing enzymes, including several forms of cytochromes P450, were uniformly distributed between the ordered and disordered regions. The redox partners, NADPH-cytochrome P450 reductase and cytochrome b5, localized to disordered microdomains. PB induction resulted in only modest changes in protein localization. Less than five proteins were variably associated with the ordered and disordered membrane microdomains in PB and control microsomes. PB induction was associated with fewer proteins localizing in the disordered membranes and more being uniformly distributed or localized to ordered domains. Ingenuity Pathway Analysis (IPA) was used to ascertain the effect of PB on cellular pathways, resulting in attenuation of pathways related to energy storage/utilization and overall cellular signaling and an increase in those related to degradative pathways. SIGNIFICANCE STATEMENT: This work identifies the lipid microdomain localization of the proteome from control and phenobarbital-induced rat liver microsomes. Thus, it provides an initial framework to understand how lipid/protein segregation influences protein-protein interactions in a tissue extract commonly used for studies in drug metabolism and uses bioinformatics to elucidate the effects of phenobarbital induction on cellular pathways.


Subject(s)
Membrane Lipids , Microsomes, Liver , Animals , Computational Biology , Cytochrome P-450 Enzyme System/metabolism , Enzyme Induction , Membrane Lipids/metabolism , Microsomes, Liver/metabolism , Phenobarbital/metabolism , Phenobarbital/pharmacology , Plant Oils , Polyethylene Glycols , Proteomics , Rats
9.
Cell Mol Neurobiol ; 42(1): 255-263, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32865675

ABSTRACT

We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells. A single protein, fascin-1, was found to differentially interact with ACE2 after Ang-II treatment for 4 h. The interactions between fascin-1 and ACE2 were confirmed by confocal microscopy and co-immunoprecipitation. Overexpression of fascin-1 attenuates the effects of Ang-II on ACE2 activity. In contrast, downregulation of fascin-1 severely decreased ACE2 enzymatic activity. Interestingly, in brain homogenates from hypertensive mice, we observed a significant reduction of fascin-1, suggesting that the levels of this protein may change in cardiovascular diseases. In conclusion, we identified fascin-1 as an ACE2-accessory protein, interacting with the enzyme in an Ang-II dependent manner and contributing to the regulation of enzyme activity.


Subject(s)
Actins , Angiotensin-Converting Enzyme 2 , Carrier Proteins , Microfilament Proteins , Actins/metabolism , Angiotensin I/metabolism , Angiotensin II/metabolism , Animals , Carrier Proteins/metabolism , HEK293 Cells , Humans , Mice , Microfilament Proteins/metabolism , Peptide Fragments/metabolism , Proteomics
10.
Geroscience ; 44(1): 371-388, 2022 02.
Article in English | MEDLINE | ID: mdl-34708300

ABSTRACT

Differentially expressed (DE) proteins in the cortical microvessels (MVs) of young, middle-aged, and old male and female mice were evaluated using discovery-based proteomics analysis (> 4,200 quantified proteins/group). Most DE proteins (> 90%) showed no significant differences between the sexes; however, some significant DE proteins showing sexual differences in MVs decreased from young (8.3%), to middle-aged (3.7%), to old (0.5%) mice. Therefore, we combined male and female data for age-dependent comparisons but noted sex differences for examination. Key proteins involved in the oxidative stress response, mRNA or protein stability, basement membrane (BM) composition, aerobic glycolysis, and mitochondrial function were significantly altered with aging. Relative abundance of superoxide dismutase-1/-2, catalase and thioredoxin were reduced with aging. Proteins participating in either mRNA degradation or pre-mRNA splicing were significantly increased in old mice MVs, whereas protein stabilizing proteins decreased. Glycolytic proteins were not affected in middle age, but the relative abundance of these proteins decreased in MVs of old mice. Although most of the 41 examined proteins composing mitochondrial complexes I-V were reduced in old mice, six of these proteins showed a significant reduction in middle-aged mice, but the relative abundance increased in fourteen proteins. Nidogen, collagen, and laminin family members as well as perlecan showed differing patterns during aging, indicating BM reorganization starting in middle age. We suggest that increased oxidative stress during aging leads to adverse protein profile changes of brain cortical MVs that affect mRNA/protein stability, BM integrity, and ATP synthesis capacity.


Subject(s)
Mitochondria , Proteomics , Animals , Basement Membrane , Brain/metabolism , Female , Glycolysis/genetics , Male , Mice , Microvessels/metabolism , Mitochondria/metabolism , Protein Stability , RNA Stability , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism
11.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34553767

ABSTRACT

Proper regulation of microtubule (MT) stability and dynamics is vital for essential cellular processes, including axonal transportation and synaptic growth and remodeling in neurons. In the present study, we demonstrate that the Drosophila ankyrin repeat and KH domain-containing protein Mask negatively affects MT stability in both larval muscles and motor neurons. In larval muscles, loss-of-function of mask increases MT polymer length, and in motor neurons, loss of mask function results in overexpansion of the presynaptic terminal at the larval neuromuscular junctions (NMJs). mask genetically interacts with stathmin (stai), a neuronal modulator of MT stability, in the regulation of axon transportation and synaptic terminal stability. Our structure-function analysis of Mask revealed that its ankyrin repeats domain-containing N-terminal portion is sufficient to mediate Mask's impact on MT stability. Furthermore, we discovered that Mask negatively regulates the abundance of the MT-associated protein Jupiter in motor neuron axons, and that neuronal knocking down of Jupiter partially suppresses mask loss-of-function phenotypes at the larval NMJs. Taken together, our studies demonstrate that Mask is a novel regulator for MT stability, and such a role of Mask requires normal function of Jupiter.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Ankyrin Repeat , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Microtubules/metabolism , Motor Neurons/metabolism
12.
Physiol Genomics ; 53(8): 358-371, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34252326

ABSTRACT

Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitudinal parent study. Quantitative discovery-based proteomics identified 1,429 differentially expressed proteins. Ingenuity Pathway Analysis (IPA) was used to calculate z-scores, or activation predictions, for functional pathways and diseases. Results revealed that protein changes associated with functional pathways centered around the "OmAT metaboproteome profile." Based on z-scores, CBA did not affect functional pathways of metabolic disease but dysregulated proteins involved in adenosine monophosphate-activated protein kinase (AMPK) signaling and lipid metabolism. OVX-mediated proteome changes were predicted to promote pathways involved in glucose- and lipid-associated metabolic disease. Proteins involved in apoptosis, necrosis, and reactive oxygen species (ROS) pathways were also predicted to be activated by OVX and these were predicted to be inhibited by CBA. These results provide evidence for the role of ovarian hormone loss in mediating OmAT metaboproteome dysregulation in SIV and suggest that CBA modifies OVX-associated changes. In the context of OVX, CBA administration produced larger metabolic and cellular effects, which we speculate may reflect a protective role of estrogen against CBA-mediated adipose tissue injury in female SIV-infected macaques.


Subject(s)
Alcoholism/metabolism , Binge Drinking/metabolism , Intra-Abdominal Fat/metabolism , Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Alcoholism/physiopathology , Animals , Binge Drinking/physiopathology , Body Composition , Female , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/virology , Macaca mulatta , Ovariectomy , Simian Acquired Immunodeficiency Syndrome/physiopathology
13.
J Cereb Blood Flow Metab ; 41(9): 2311-2328, 2021 09.
Article in English | MEDLINE | ID: mdl-33715494

ABSTRACT

Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.


Subject(s)
Brain/physiopathology , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Microvessels/physiopathology , Proteomics/methods , Animals , Female , Male , Rats , Rats, Sprague-Dawley , Sex Characteristics
14.
Biochim Biophys Acta Mol Basis Dis ; 1867(6): 166104, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33617988

ABSTRACT

Depolarized/damaged mitochondria aggregate at the perinuclear region prior to mitophagy in cells treated with mitochondrial stressors. However, the cellular mechanism(s) by which damaged mitochondria are transported and remain aggregated at the perinuclear region is unknown. Here, we demonstrate that mitofusins (Mfn1/2) are post-translationally modified by SUMO2 (Small Ubiquitin-related Modifier 2) in Human embryonic kidney 293 (Hek293) cells treated with protonophore CCCP and proteasome inhibitor MG132, both known mitochondrial stressors. SUMOylation of Mfn1/2 is not for their proteasomal degradation but facilitate mitochondrial congression at the perinuclear region in CCCP- and MG132-treated cells. Additionally, congressed mitochondria (mito-aggresomes) colocalize with LC3, ubiquitin, and SUMO2 in CCCP-treated cells. Knowing that SUMO functions as a "molecular glue" to facilitate protein-protein interactions, we propose that SUMOylation of Mfn1/2 may congress, glues, and confines damaged mitochondria to the perinuclear region thereby, protectively quarantining them from the heathy mitochondrial network until their removal via mitophagy in cells.


Subject(s)
Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Cell Nucleus/metabolism , GTP Phosphohydrolases/metabolism , Mitochondria/pathology , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitophagy , Sumoylation , GTP Phosphohydrolases/genetics , HEK293 Cells , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/genetics , Proton Ionophores/pharmacology , Stress, Physiological
15.
J Cereb Blood Flow Metab ; 41(2): 397-412, 2021 02.
Article in English | MEDLINE | ID: mdl-32241204

ABSTRACT

Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.


Subject(s)
Computational Biology/methods , Microvessels/metabolism , Mitochondria/metabolism , Proteomics/methods , Animals , Female , Male , Rats , Rats, Sprague-Dawley
16.
Pathogens ; 9(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255203

ABSTRACT

Iron homeostasis offers a significant bacterial vulnerability because pathogens obtain essential iron from their mammalian hosts, but host-defenses maintain vanishingly low levels of free iron. Although pathogens have evolved mechanisms to procure host-iron, these depend on well-regulated iron homeostasis. To disrupt iron homeostasis, our work has targeted iron mobilization from the iron storage protein bacterioferritin (BfrB) by blocking a required interaction with its cognate ferredoxin partner (Bfd). The blockade of the BfrB-Bfd complex by deletion of the bfd gene (Δbfd) causes iron to irreversibly accumulate in BfrB. In this study we used mass spectrometry and NMR spectroscopy to compare the proteomic response and the levels of key intracellular metabolites between wild type (wt) and isogenic ΔbfdP. aeruginosa strains. We find that the irreversible accumulation of unusable iron in BfrB leads to acute intracellular iron limitation, even if the culture media is iron-sufficient. Importantly, the iron limitation and concomitant iron metabolism dysregulation trigger a cascade of events that lead to broader metabolic homeostasis disruption, which includes sulfur limitation, phenazine-mediated oxidative stress, suboptimal amino acid synthesis and altered carbon metabolism.

17.
Appl Environ Microbiol ; 86(22)2020 10 28.
Article in English | MEDLINE | ID: mdl-32917753

ABSTRACT

Proteins that oxidize extracellular substrates in Gram-positive bacteria are poorly understood. Ferrimicrobium acidiphilum is an actinobacterium that respires aerobically on extracellular ferrous ions at pH 1.5. In situ absorbance measurements were conducted on turbid suspensions of intact Fm. acidiphilum using an integrating cavity absorption meter designed for that purpose. Initial velocity kinetic studies monitored the appearance of product ferric ions in the presence of catalytic quantities of cells. Cell-catalyzed iron oxidation obeyed the Michaelis-Menten equation with Km and Vmax values of 71 µM and 0.29 fmol/min/cell, respectively. Limited-turnover kinetic studies were conducted with higher concentrations of cells to detect and monitor changes in the absorbance properties of cellular redox proteins when the cells were exposed to limited quantities of soluble reduced iron. A single a-type cytochrome with reduced absorbance peaks at 448 and 605 nm was the only redox-active chromophore that was visible as the cells respired aerobically on iron. The reduced cytochrome 605 exhibited mathematical and correlational properties that were consistent with the hypothesis that oxidation of the cytochrome constituted the rate-limiting step in the aerobic respiratory process, with a turnover number of 35 ± 2 s-1 Genomic and proteomic analyses showed that Fm. acidiphilum could and did express only two a-type heme copper terminal oxidases. Cytochrome 605 was associated with the terminal oxidase gene that is located between nucleotides 31,090 and 33,039, inclusive, in the annotated circular genome of this bacterium.IMPORTANCE The identities and functions of proteins involved in aerobic respiration on extracellular ferrous ions at acidic pH are poorly understood in the four phyla of Gram-positive eukaryotes and archaea where such activities occur. In situ absorbance measurements were conducted on Fm. acidiphilum as it respired on extracellular iron using an integrating cavity absorption meter that permitted accurate optical measurements in turbid suspensions of the intact bacterium under physiological conditions. The significance of these measurements is that they permitted a direct spectrophotometric examination of the extents and rates of biological electron transfer events in situ under noninvasive physiological conditions without disrupting the complexity of the live cellular environment. One thing is certain: one way to understand how a protein functions in an intact organism is to actually observe that protein as it functions in the intact organism. This paper provides an example of just such an observation.


Subject(s)
Actinobacteria/metabolism , Bacterial Proteins/metabolism , Cytochromes/metabolism , Iron/metabolism , Aerobiosis , Oxidation-Reduction
18.
Invest Ophthalmol Vis Sci ; 61(11): 15, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32910134

ABSTRACT

Purpose: Stress can lead to short- or long-term changes in phenotype. Accumulating evidence also supports the transmission of maladaptive phenotypes, induced by adverse stressors, through the germline to manifest in subsequent generations, providing a novel mechanistic basis for the heritability of disease. In the present study in mice, we tested the hypothesis that repeated presentations of a nonharmful conditioning stress, demonstrated previously to protect against retinal ischemia, will also provide ischemic protection in the retinae of their untreated, first-generation (F1) adult offspring. Methods: Swiss-Webster ND4 outbred mice were mated following a 16-week period of brief, every-other-day conditioning exposures to mild systemic hypoxia (repetitive hypoxic conditioning, RHC). Retinae of their 5-month-old F1 progeny were subjected to unilateral ischemia. Scotopic electroretinography quantified postischemic outcomes. The injury-resilient retinal proteome was revealed by quantitative mass spectrometry, and bioinformatic analyses identified the biochemical pathways and networks in which these differentially expressed proteins operate. Results: Significant resilience to injury in both sexes was documented in F1 mice derived from RHC-treated parents, relative to matched F1 adult progeny derived from normoxic control parents. Ischemia-induced increases and decreases in the expression of many visual transduction proteins that are integral to photoreceptor function were abrogated by parental RHC, providing a molecular basis for the observed functional protection. Conclusions: Our proteomic analyses provided mechanistic insights into the molecular manifestation of the inherited, injury-resilient phenotype. To our knowledge, this is the first study in a mammalian model documenting the reprogramming of heritability to promote disease resilience in the next generation.


Subject(s)
Ischemia/prevention & control , Ischemic Preconditioning/methods , Neuroprotection , Proteome/metabolism , Proteomics/methods , Retinal Diseases/prevention & control , Retinal Vessels/pathology , Animals , Disease Models, Animal , Electroretinography , Female , Ischemia/diagnosis , Ischemia/metabolism , Male , Mice , Mice, Inbred Strains , Retinal Diseases/diagnosis , Retinal Diseases/metabolism
19.
Clin Proteomics ; 17: 12, 2020.
Article in English | MEDLINE | ID: mdl-32265614

ABSTRACT

BACKGROUND: Sialolithiasis or salivary gland stones are associated with high clinical morbidity. The advances in the treatment of sialolithiasis has been limited, however, by our understanding of their composition. More specifically, there is little information regarding the formation and composition of the protein matrix, the role of mineralogical deposition, or the contributions of cell epithelium and secretions from the salivary glands. A better understanding of these stone characteristics could pave the way for future non-invasive treatment strategies. METHODS: Twenty-nine high-quality ductal stone samples were analyzed. The preparation included successive washings to avoid contamination from saliva and blood. The sialoliths were macerated in liquid nitrogen and the maceration was subjected to a sequential, four-step, protein extraction. The four fractions were pooled together, and a standardized aliquot was subjected to tandem liquid chromatography mass spectrometry (LCMS). The data output was subjected to a basic descriptive statistical analysis for parametric confirmation and a subsequent G.O.-KEGG data base functional analysis and classification for biological interpretation. RESULTS: The LC-MS output detected 6934 proteins, 824 of which were unique for individual stones. An example of our sialolith protein data is available via ProteomeXchange with the identifier PXD012422. More important, the sialoliths averaged 53% homology with bone-forming proteins that served as a standard comparison, which favorably compared with 62% homology identified among all sialolith sample proteins. The non-homologous protein fraction had a highly variable protein identity. The G.O.-KEGG functional analysis indicated that extracellular exosomes are a primary cellular component in sialolithiasis. Light and electron microscopy also confirmed the presence of exosomal-like features and the presence of intracellular microcrystals. CONCLUSION: Sialolith formation presents similarities with the hyperoxaluria that forms kidney stones, which suggests the possibility of a common origin. Further verification of a common origin could fundamentally change the way in which lithiasis is studied and treated.

20.
J Cereb Blood Flow Metab ; 40(5): 1077-1089, 2020 05.
Article in English | MEDLINE | ID: mdl-31220996

ABSTRACT

Oxidative stress and chronic inflammation in arterial walls have been implicated in intracranial aneurysm (IA) formation and rupture. Dimethyl fumarate (DMF) exhibits immunomodulatory properties, partly via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway which reduces oxidative stress by inducing the antioxidant response element (ARE). This study evaluated the effects of DMF both in vitro, using tumor necrosis factor (TNF)-α-treated vascular smooth muscle cells (VSMC), and in vivo, using a murine elastase model to induce aneurysm formation. The mice were treated with either DMF at 100 mg/kg/day P.O. or vehicle for two weeks. DMF treatment protected VSMCs from TNF-α-induced inflammation as demonstrated by its downregulation of cytokines and upregulation of Nrf2 and smooth muscle cell markers. At higher doses, DMF also inhibited the pro-proliferative action of TNF-α by increasing apoptosis which protected the cells from aponecrosis. In mice, DMF treatment significantly decreased the incidence of aneurysm formation and rupture, at the same time increasing Nrf2 levels. DMF demonstrated a neuroprotective effect in mice with a resultant inhibition of oxidative stress, inflammation, and fibrosis in the cerebrovasculature. This suggests a potential role for DMF as a rescue therapy for patients at risk for formation and rupture of IAs.


Subject(s)
Dimethyl Fumarate/pharmacology , Intracranial Aneurysm/pathology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Animals , Antioxidants/pharmacology , Apoptosis/drug effects , Intracranial Aneurysm/metabolism , Male , Mice , Mice, Inbred C57BL , Muscle, Smooth, Vascular/drug effects , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...