Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 88(14): 5984-8, 1991 Jul 15.
Article in English | MEDLINE | ID: mdl-2068074

ABSTRACT

Sonicates of mouse bone marrow-derived mast cells (BMMC) differentiated in vitro and of mouse serosal mast cells differentiated in vivo contained small but approximately equal amounts of aminopeptidase activity, as determined by cleavage of leucine-beta-naphthylamide and resolution of the reaction products by reverse-phase high-performance liquid chromatography. Aminopeptidase activity was exocytosed from antigen-activated, IgE-sensitized BMMC in proportion to the secretory granule enzyme beta-hexosaminidase, thereby localizing approximately 60% of the total cell-associated aminopeptidase activity to the secretory granules of the mast cells. A prominent secretory granule location for aminopeptidase was confirmed by activity measurement in subcellular fractions of disrupted BMMC. The secretory granule aminopeptidase had a pH optimum of 6.0-8.0 and a Km of 0.36 +/- 0.06 mM (mean +/- SD; n = 3) for leucine-beta-naphthylamide. When various amino acid beta-naphthylamides were used as substrates, the preference of the secretory granule enzyme was Ala greater than Leu greater than Phe much greater than Arg much greater than Asp = Tyr. Most of the aminopeptidase activity that was exocytosed from calcium ionophore-activated BMMC was bound to 35S-labeled proteoglycans in complexes of greater than 1 x 10(7) kDa as defined by exclusion during Sepharose CL-2B gel-filtration chromatography. We postulate that the amino-peptidase in the mast cell protease/proteoglycan complexes allows the removal of N-terminal amino acids from peptides that are generated by the action of mast cell endopeptidases.


Subject(s)
Aminopeptidases/metabolism , Cytoplasmic Granules/enzymology , Mast Cells/enzymology , Aminopeptidases/isolation & purification , Animals , Cell Fractionation , Cells, Cultured , Centrifugation, Density Gradient , Chromatography, Gel , Kinetics , Mice , Mice, Inbred BALB C , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...