Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Publication year range
1.
Funct Integr Genomics ; 24(3): 92, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733534

ABSTRACT

In the early 2000s, the global emergence of rotavirus (RVA) G12P[8] genotype was noted, while G12P[6] and G12P[9] combinations remained rare in humans. This study aimed to characterize and phylogenetically analyze three Brazilian G12P[9] and four G12P[6] RVA strains from 2011 to 2020, through RT-PCR and sequencing, in order to enhance our understanding of the genetic relationship between human and animal-origin RVA strains. G12P[6] strains displayed a DS-1-like backbone, showing a distinct genetic clustering. G12P[6] IAL-R52/2020, IAL-R95/2020 and IAL-R465/2019 strains clustered with 2019 Northeastern G12P[6] Brazilian strains and a 2018 Benin strain, whereas IAL-R86/2011 strain grouped with 2010 Northern G12P[6] Brazilian strains and G2P[4] strains from the United States and Belgium. These findings suggest an African genetic ancestry and reassortments with co-circulating American strains sharing the same DS-1-like constellation. No recent zoonotic reassortment was observed, and the DS-1-like constellation detected in Brazilian G12P[6] strains does not seem to be genetically linked to globally reported intergenogroup G1/G3/G9/G8P[8] DS-1-like human strains. G12P[9] strains exhibited an AU-1-like backbone with two different genotype-lineage constellations: IAL-R566/2011 and IAL-R1151/2012 belonged to a VP3/M3.V Lineage, and IAL-R870/2013 to a VP3/M3.II Lineage, suggesting two co-circulating strains in Brazil. This genetic diversity is not observed elsewhere, and the VP3/M3.II Lineage in G12P[9] strains seems to be exclusive to Brazil, indicating its evolution within the country. All three G12P[9] AU-1-like strains were closely relate to G12P[9] strains from Paraguay (2006-2007) and Brazil (2010). Phylogenetic analysis also highlighted that all South American G12P[9] AU-1-like strains had a common origin and supports the hypothesis of their importation from Asia, with no recent introduction from globally circulating G12P[9] strains or reassortments with local G12 strains P[8] or P[6]. Notably, certain genes in the Brazilian G12P[9] AU-1-like strains share ancestry with feline/canine RVAs (VP3/M3.II, NSP4/E3.IV and NSP2/N3.II), whereas NSP1/A3.VI likely originated from artiodactyls, suggesting a history of zoonotic transmission with human strains. This genomic data adds understanding to the molecular epidemiology of G12P[6] and G12P[9] RVA strains in Brazil, offering insights into their genetic diversity and evolution.


Subject(s)
Evolution, Molecular , Genetic Variation , Phylogeny , Rotavirus Infections , Rotavirus , Rotavirus/genetics , Rotavirus/classification , Brazil , Humans , Rotavirus Infections/virology , Genotype , Animals
2.
J Med Virol ; 96(1): e29429, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38258346

ABSTRACT

This study aimed to investigate the frequency and genotypic diversity of human bocavirus (HBoV) in historical fecal samples collected before 2005 in Brazil and understand its natural history in patients with diarrhea. Between 1998 and 2005, 3347 samples were tested for HBoV by RT-PCR, with a detection rate of 5.8% (195/3347). Coinfection with norovirus (NoV) and human adenovirus (HAdV) was found in 34.9% (68/195), indicating HBoV's potential role as a causative agent of diarrheal disease. The detection rate varied over the years (p < 0.05), suggesting natural oscillatory fluctuations. HBoV was more prevalent in fall and winter, with higher positivity in children ≤5 years (p < 0.05), reinforcing that HBoV is an important pathogen in childhood diarrhea. Genotyping (32.8%; 64/195) revealed the circulation of HBoV-1 (79.7%, 51/64), HBoV-3 (12.5%, 8/64), HBoV-2 (6.2%, 4/64), and the rare HBoV-4 (1.6%, 1/64). Difference in HBoV-1 and HBoV-2/-3 mono-infections prevalence (p < 0.05), suggests a potential role of HBoV-1 in the pathogenicity of diarrheal disease. The study highlights HBoV's lasting impact on viral gastroenteritis in Brazil and emphasizes its genotypic diversity. Recommending screening for HBoV in public health laboratories is crucial for understanding its role in gastrointestinal diseases. The data also contribute to understanding the molecular characterization of enteric viruses in historical fecal samples.


Subject(s)
Adenoviruses, Human , Enterovirus Infections , Human bocavirus , Child , Humans , Brazil/epidemiology , Human bocavirus/genetics , Diarrhea/epidemiology , Genotype
3.
Arch Virol ; 168(7): 176, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37306860

ABSTRACT

There is a dearth of information on the molecular epidemiology of rotaviruses in pets in Brazil. The aim of this study was to monitor rotavirus infections in household dogs and cats, determine full-genotype constellations, and obtain data on evolutionary relationships. Between 2012 and 2021, 600 fecal samples from dogs and cats (516 and 84, respectively) were collected at small animal clinics in São Paulo state, Brazil. Rotavirus screening was conducted using ELISA, PAGE, RT-PCR, sequencing, and phylogenetic analysis. Rotavirus type A (RVA) was detected in 0.5% (3/600) of the animals. No non-RVA types were detected. The three canine RVA strains were found to have a novel genetic constellation, G3-P[3] -I2-R3-C2-M3-A9-N2-T3-E3-H6, which has never been reported in dogs. As expected, all of the viral genes, except those encoding NSP2 and VP7, were closely related to the corresponding genes from canine, feline, and canine-like-human RVA strains. A novel N2 (NSP2) lineage was identified, grouping together Brazilian canine, human, rat and bovine strains, suggesting that genetic reassortment had occurred. Uruguayan G3 strains obtained from sewage contained VP7 genes that were phylogenetically close to those of the Brazilian canine strains, which suggests that these strains are widely distributed in pet populations in South American countries. For the NSP2 (I2), NSP3 (T3), NSP4 (E3), NSP5 (H6), VP1 (R3), VP3 (M3), and VP6 (I2) segments, phylogenetic analysis revealed possibly new lineages. The epidemiological and genetic data presented here point out the necessity for collaborative efforts to implement the One Health strategy in the field of RVA research and to provide an updated understanding of RVA strains circulating canines in Brazil.


Subject(s)
Cat Diseases , Dog Diseases , Rotavirus Infections , Rotavirus , Humans , Cats , Animals , Dogs , Cattle , Rats , Brazil , Phylogeny , Genotype
4.
Viruses ; 15(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36992373

ABSTRACT

Rotavirus (RVA) G8 is frequently detected in animals, but only occasionally in humans. G8 strains, however, are frequently documented in nations in Africa. Recently, an increase in G8 detection was observed outside Africa. The aims of the study were to monitor G8 infections in the Brazilian human population between 2007 and 2020, undertake the full-genotype characterization of the four G8P[4], six G8P[6] and two G8P[8] RVA strains and conduct phylogenetic analysis in order to understand their genetic diversity and evolution. A total of 12,978 specimens were screened for RVA using ELISA, PAGE, RT-PCR and Sanger sequencing. G8 genotype represented 0.6% (15/2434) of the entirely RVA-positive samples. G8P[4] comprised 33.3% (5/15), G8P[6] 46.7% (7/15) and G8P[8] 20% (3/15). All G8 strains showed a short RNA pattern. All twelve selected G8 strains displayed a DS-1-like genetic backbone. The whole-genotype analysis on a DS-1-like backbone identified four different genotype-linage constellations. According to VP7 analysis, the Brazilian G8P[8] strains with the DS-1-like backbone strains were derived from cattle and clustered with newly DS-1-like G1/G3/G9/G8P[8] strains and G2P[4] strains. Brazilian IAL-R193/2017/G8P[8] belonged to a VP1/R2.XI lineage and were grouped with bovine-like G8P[8] strains with the DS-1-like backbone strains detected in Asia. Otherwise, the Brazilian IAL-R558/2017/G8P[8] possess a "Distinct" VP1/R2 lineage never previously described and grouped apart from any of the DS-1-like reference strains. Collectively, our findings suggest that the Brazilian bovine-like G8P[8] strains with the DS-1-like backbone strains are continuously evolving and likely reassorting with local RVA strains rather than directly relating to imports from Asia. The Brazilian G8P[6]-DS-1-like strains have been reassorted with nearby co-circulating American strains of the same DS-1 genotype constellation. However, phylogenetic analyses revealed that these strains have some genetic origin from Africa. Finally, rather than being African-born, Brazilian G8P[4]-DS-1-like strains were likely imported from Europe. None of the Brazilian G8 strains examined here exhibited signs of recent zoonotic reassortment. G8 strains continued to be found in Brazil according to their intermittent and localized pattern, thus, does not suggest that a potential emergence is taking place in the country. Our research demonstrates the diversity of G8 RVA strains in Brazil and adds to the understanding of G8P[4]/P[6]/P[8] RVA genetic diversity and evolution on a global scale.


Subject(s)
Rotavirus Infections , Rotavirus , Humans , Cattle , Animals , Rotavirus/genetics , Rotavirus Infections/epidemiology , Rotavirus Infections/veterinary , Rotavirus Infections/genetics , Brazil/epidemiology , Phylogeny , Genome, Viral , Genomics , Genotype , RNA, Viral/genetics
5.
Viruses ; 15(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36851548

ABSTRACT

Hepatitis E virus (HEV) is an emerging zoonotic pathogen associated with relevant public health issues. The aim of this study was to investigate HEV presence in free-living capybaras inhabiting urban parks in São Paulo state, Brazil. Molecular characterization of HEV positive samples was undertaken to elucidate the genetic diversity of the virus in these animals. A total of 337 fecal samples were screened for HEV using RT-qPCR and further confirmed by conventional nested RT-PCR. HEV genotype and subtype were determined using Sanger and next-generation sequencing. HEV was detected in one specimen (0.3%) and assigned as HEV-3f. The IAL-HEV_921 HEV-3f strain showed a close relationship to European swine, wild boar and human strains (90.7-93.2% nt), suggesting an interspecies transmission. Molecular epidemiology of HEV is poorly investigated in Brazil; subtype 3f has been reported in swine. This is the first report of HEV detected in capybara stool samples worldwide.


Subject(s)
Hepatitis E virus , Humans , Animals , Swine , Brazil/epidemiology , Hepatitis E virus/genetics , Rodentia , Feces , Genotype
6.
Braz J Microbiol ; 54(1): 543-551, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36342660

ABSTRACT

Capybara (Hydrochoerus hydrochaeris) is the world's largest rodent species distributed throughout South America. These animals are incredibly tolerant to anthropogenic environments and are occupying large urban centers. Capybaras are known to carry potentially zoonotic agents, including R. rickettsia, Leishmania spp., Leptospira spp., Trypanosoma spp., Salmonella spp., Toxoplasma gondii, and rabies virus. Focusing on the importance of monitoring potential sources of emerging zoonotic viruses and new viral reservoirs, the aim of the present study was to assess the presence of fecal-borne viruses in the feces of capybaras living in urban parks in São Paulo state, Brazil. A total of 337 fecal samples were collected between 2018 and 2020 and screened for the following: (i) Rotavirus group A (RVA) by ELISA; (ii) non-RVA species and Picobirnavirus (PBV) using PAGE; (iii) Human Bocaparvovirus (HBoV), Bufavirus (BuV), Tusavirus (TuV), and Cutavirus (CuV) qPCR; (iv) Human Enterovirus (EV), Norovirus GII (NoV), and Hantavirus by in houses RT-qPCR; (v) SARS-CoV-2 via commercial RT-qPCR kit assay; and (vi) Astrovirus (AstV) and Adenovirus (AdV) using conventional nested (RT)-PCRs. All fecal samples tested were negative for fecal-borne viruses. This study adds further evidence that the fecal-borne viruses is a minor public health issue in Brazilian capybaras, at least during the surveillance period and surveyed areas. Continuous monitoring of sylvatic animals is essential to prevent and control the emergence or re-emergence of newly discovered virus as well as viruses with known zoonotic potential.


Subject(s)
COVID-19 , Public Health , Animals , Humans , Brazil/epidemiology , Rodentia/microbiology , SARS-CoV-2 , Feces
SELECTION OF CITATIONS
SEARCH DETAIL
...