Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Dis ; 146: 105132, 2020 12.
Article in English | MEDLINE | ID: mdl-33049315

ABSTRACT

Epilepsy is characterized by a progressive predisposition to suffer seizures due to neuronal hyperexcitability, and one of its most common co-morbidities is cognitive decline. In animal models of chronic epilepsy, such as kindling, electrically induced seizures impair long-term potentiation (LTP), deteriorating learning and memory performance. Astrocytes are known to actively modulate synaptic plasticity and neuronal excitability through Ca2+-dependent gliotransmitter release. It is unclear, however, if astroglial Ca2+ signaling could contribute to the development of synaptic plasticity alterations in the epileptic hippocampus. By employing electrophysiological tools and Ca2+ imaging, we found that glutamatergic CA3-CA1 synapses from kindled rats exhibit an impairment in theta burst (TBS) and high frequency stimulation (HFS)-induced LTP, which is accompanied by an increased probability of neurotransmitter release (Pr) and an abnormal pattern of astroglial Ca2+-dependent transients. Both the impairment in LTP and the Pr were reversed by inhibiting purinergic P2Y1 receptors (P2Y1R) with the specific antagonist MRS2179, which also restored the spontaneous and TBS-induced pattern of astroglial Ca2+-dependent signals. Two consecutive, spaced TBS protocols also failed to induce LTP in the kindled group, however, this impairment was reversed and a strong LTP was induced when the second TBS was applied in the presence of MRS2179, suggesting that the mechanisms underlying the alterations in TBS-induced LTP are likely associated with an aberrant modulation of the induction threshold for LTP. Altogether, these results indicate that P2Y1R inhibition rescues both the pattern of astroglial Ca2+-activity and the plastic properties of CA3-CA1 synapses in the epileptic hippocampus, suggesting that astrocytes might take part in the mechanisms that deteriorate synaptic plasticity and thus cause cognitive decline in epileptic patients.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Epilepsy/physiopathology , Neuronal Plasticity/physiology , Receptors, Purinergic P2Y1/metabolism , Animals , CA1 Region, Hippocampal/metabolism , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/physiology , Rats , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL