Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517171

ABSTRACT

Background: Focal amplification of fibroblast growth factor receptor 1 (FGFR1) defines a subgroup of breast cancers with poor prognosis and high risk of recurrence. We sought to demonstrate the potential of circulating cell-free DNA (cfDNA) analysis to evaluate FGFR1 copy numbers from a cohort of 100 metastatic breast cancer (mBC) patients. Methods: Formalin-fixed paraffin-embedded (FFPE) tissue samples were screened for FGFR1 amplification by FISH, and positive cases were confirmed with a microarray platform (OncoscanTM). Subsequently, cfDNA was evaluated by two approaches, i.e., mFAST-SeqS and shallow whole-genome sequencing (sWGS), to estimate the circulating tumor DNA (ctDNA) allele fraction (AF) and to evaluate the FGFR1 status. Results: Tissue-based analyses identified FGFR1 amplifications in 20/100 tumors. All cases with a ctDNA AF above 3% (n = 12) showed concordance for FGFR1 status between tissue and cfDNA. In one case, we were able to detect a high-level FGFR1 amplification, although the ctDNA AF was below 1%. Furthermore, high levels of ctDNA indicated an association with unfavorable prognosis based on overall survival. Conclusions: Screening for FGFR1 amplification in ctDNA might represent a viable strategy to identify patients eligible for treatment by FGFR inhibition, and mBC ctDNA levels might be used for the evaluation of prognosis in clinical drug trials.

2.
Nature ; 538(7626): 477-482, 2016 10 27.
Article in English | MEDLINE | ID: mdl-27760111

ABSTRACT

Avoidance of apoptosis is critical for the development and sustained growth of tumours. The pro-survival protein myeloid cell leukemia 1 (MCL1) is overexpressed in many cancers, but the development of small molecules targeting this protein that are amenable for clinical testing has been challenging. Here we describe S63845, a small molecule that specifically binds with high affinity to the BH3-binding groove of MCL1. Our mechanistic studies demonstrate that S63845 potently kills MCL1-dependent cancer cells, including multiple myeloma, leukaemia and lymphoma cells, by activating the BAX/BAK-dependent mitochondrial apoptotic pathway. In vivo, S63845 shows potent anti-tumour activity with an acceptable safety margin as a single agent in several cancers. Moreover, MCL1 inhibition, either alone or in combination with other anti-cancer drugs, proved effective against several solid cancer-derived cell lines. These results point towards MCL1 as a target for the treatment of a wide range of tumours.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Models, Biological , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Thiophenes/pharmacology , Thiophenes/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Cell Line, Tumor , Female , Humans , Leukemia/drug therapy , Leukemia/metabolism , Leukemia/pathology , Lymphoma/drug therapy , Lymphoma/metabolism , Lymphoma/pathology , Male , Mice , Models, Molecular , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasms/metabolism , Pyrimidines/administration & dosage , Thiophenes/administration & dosage , Xenograft Model Antitumor Assays , bcl-2 Homologous Antagonist-Killer Protein/metabolism , bcl-2-Associated X Protein/metabolism
3.
Neurosci Res ; 70(4): 349-60, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21609738

ABSTRACT

To improve our understanding of the molecular events underlying the effects of positive allosteric modulators of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (S)-AMPA-type glutamate receptors, gene expression profiles of primary cortical culture were measured by Agilent-Microarray technique under (S)-AMPA (1µM) stimulation for 0.5, 6, 24 and 48h in the presence or absence of S70340 (30µM), an allosteric potentiator of AMPA receptors. (S)-AMPA and S70340 treatment alone have little effect on gene expression whereas as early as 6h, their combination induced a large number of genes known to decrease apoptosis and mediate cell survival. Pathway analyses of (S)-AMPA+S70340 treatment-mediated gene expression from 6 to 48h further suggested the activation of cellular functions including neuron differentiation and neurite outgrowth. A proportion of genes implicated in these functions encode proteins involved in environmental cues and are expressed in growth cones, such as extracellular matrix component proteins and filopodia microfilament-associated proteins. Time course analysis of mRNA expression combined with in silico promoter analysis revealed an enrichment in the cAMP response element (CRE) among co-regulated genes. This study demonstrated that S70340-mediated AMPA potentialisation activated genes and functional processes involved in neuroprotective and cognitive effects and describes putative new functional biomarkers.


Subject(s)
Cerebral Cortex/physiology , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Receptors, AMPA/agonists , Receptors, AMPA/physiology , Animals , Cells, Cultured , Cerebral Cortex/drug effects , Gene Regulatory Networks/genetics , Rats , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/analogs & derivatives , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
4.
PPAR Res ; 20102010.
Article in English | MEDLINE | ID: mdl-20953342

ABSTRACT

Rosiglitazone (RSG), developed for the treatment of type 2 diabetes mellitus, is known to have potent effects on carbohydrate and lipid metabolism leading to the improvement of insulin sensitivity in target tissues. To further assess the capacity of RSG to normalize gene expression in insulin-sensitive tissues, we compared groups of 18-day-treated db/db mice with increasing oral doses of RSG (10, 30, and 100 mg/kg/d) with untreated non-diabetic littermates (db/+). For this aim, transcriptional changes were measured in liver, inguinal adipose tissue (IAT) and soleus muscle using microarrays and real-time PCR. In parallel, targeted metabolomic assessment of lipids (triglycerides (TGs) and free fatty acids (FFAs)) in plasma and tissues was performed by UPLC-MS methods. Multivariate analyses revealed a relationship between the differential gene expressions in liver and liver trioleate content and between blood glucose levels and a combination of differentially expressed genes measured in liver, IAT, and muscle. In summary, we have integrated gene expression and targeted metabolomic data to present a comprehensive overview of RSG-induced changes in a diabetes mouse model and improved the molecular understanding of how RSG ameliorates diabetes through its effect on the major insulin-sensitive tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...