Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(17): 21296-21305, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37073988

ABSTRACT

In recent years, non-fused non-fullerene acceptors (NFAs) have attracted increasing consideration due to several advantages, which include simple preparation, superior yield, and low cost. In the work reported here, we designed and synthesized three new NFAs with the same cyclopentadithiophenevinylene (CPDTV) trimer as the electron-donating unit and different terminal units (IC for FG10, IC-4F for FG8, and IC-4Cl for FG6). Both halogenated NFAs, i.e., FG6 and FG8, show red-shifted absorption spectra and higher electron mobilities (more pronounced for FG6) in comparison with FG10. Moreover, the dielectric constants of these materials also increased upon halogenation of the IC terminal units, thus leading to a reduction in the exciton binding energy, which is favorable for dissociation of excitons and subsequent charge transfer despite the driving force (highest occupied molecular orbital and lowest unoccupied molecular orbital offsets) being very small. The organic solar cells (OSCs) constructed using these acceptors and PBDB-T, as the donor, showed PCE values of 15.08, 12.56, and 9.04% for FG6, FG8, and FG10, respectively. The energy loss for the FG6-based device was the lowest (0.45 eV) of all the devices, and this may be attributed to it having the highest dielectric constant, which leads to a reduction in the binding energy of exciton and a small driving force for hole transfer from FG6 to PBDB-T. The results indicate that the NFA containing the CPDTV oligomer core and halogenated terminal units can efficiently spread the absorption spectrum to the NIR zone. Non-fused NFAs have a bright future in the quest to obtain efficient OSCs with low cost for marketable purposes.

2.
ACS Appl Mater Interfaces ; 13(5): 6461-6469, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33524254

ABSTRACT

Organic solar cells (OSCs) that contain small molecules only were prepared with FG1 as the donor, a narrow band gap non-fullerene acceptor MPU4, and a wide band gap PC71BM. The OSCs based on optimized FG1:MPU4 (1:1.2) and FG1:PC71BM (1:1.5) active layers, respectively, gave power conversion efficiencies (PCEs) of 11.18% with a short circuit current (JSC) of 19.54 mA/cm2, open circuit voltage (VOC) of 0.97 V, and fill factor (FF) of 0.59, and 6.62% with a JSC of 12.50 mA/cm2, VOC of 0.84 V, and FF of 0.63%, respectively. A PCE of 13.26% was obtained from the optimized ternary FG1:PC71BM:MPU4 (1:0.3:0.9) OSCs and this arises because of the boost in a JSC of 21.91 mA/cm2 and FF of 0.68. The VOC of the ternary OSCs (0.89 V) lies between those for the OSCs based on FG1:MPU4 and FG1:PC71BM, which indicates the formation of an alloy of the two acceptors. The increase in JSC and FF in the ternary OSCs may result from the efficient energy transfer from PC71BM to MPU4 as well as more charge-transfer donor/acceptor interfaces, enhanced charge carrier mobilities resulting in better adjusted charge transport, and lower bimolecular and trap-assisted recombination. The appropriate phase separation, increased crystallinity, and reduced π-π stacking distance in the ternary active layer are consistent with the enhancement in the FF for OSCs based on a ternary active layer. The results of this work suggest the merging of the fullerene acceptor into the non-fullerene acceptor to form a fullerene/non-fullerene acceptor alloy, and this may be a viable approach to obtain high-performance OSCs.

3.
RSC Adv ; 10(68): 41264-41271, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-35516533

ABSTRACT

A series of four oligomers of cyclopentadithiophene-vinylenes end capped with pyridine groups was prepared and their optical and electronic properties studied. Treatment with trifluoroacetic acid (TFA) leads to the bisprotonation of the nitrogens of the pyridine, which has an important impact on the optical properties. Excess treatment with TFA provokes the oxidation of the conjugated core, generating radical cations and dications. The ease of the TFA treatment in solution was extended to protonation in the solid-state where further characterization of the neutral and TFA-treated samples was carried out in electrically active substrates in organic field-effect transistors. Finally, the new molecules were found to be excellent conductors in single-molecule junctions thanks to strong electron delocalization and resonance orbital mediated transport. These studies show the opening of a spectrum of possibilities by suitable terminal substitution of π-cores.

4.
Chemistry ; 25(2): 464-468, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30480849

ABSTRACT

Oligo-S,S-dioxothienylenevinylenes have been prepared by transferring oxygen atoms to the sulfur atoms using the HOF⋅CH3 CN complex. Their photophysical properties are presented in comparison with their thiophenevinylene congeners. Together with their vibrational properties and molecular force fields, this study allows for the interpretation of the alteration of aromaticity and inter-ring exocyclic π-conjugation in this series.

5.
J Am Chem Soc ; 136(3): 1082-9, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24359453

ABSTRACT

A general and efficient biomimetic method for the synthesis of aldimines from aldehydes and compounds bearing the NH2 group in the presence of pyrrolidine as a catalyst has been developed. These organocatalytic reactions, based on the application of the concept of nucleophilic catalysis, proceed with outstanding yields in the absence of acids and metals under simple conditions and minimum experimental manipulation. The method has been mainly applied to the synthesis of N-sulfinyl and N-sulfonyl imines, but its general validity has been proven with the preparation of representative N-phosphinoyl, N-alkyl, and N-aryl imines. These unprecedented reactions, which presumably occur via iminium activation without requiring acidic conditions, are an interesting and competitive alternative to the classical methods for preparing aldimines.


Subject(s)
Amines/chemistry , Imines/chemistry , Imines/chemical synthesis , Biomimetics , Catalysis , Chemistry Techniques, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...