Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779127

ABSTRACT

Technological approaches which enable the effective utilization of CO2 for manufacturing value-added chemicals and fuels can help to solve environmental problems derived from large CO2 emissions associated with the use of fossil fuels. One of the most interesting products that can be synthesized from CO2 is methanol, since it is an industrial commodity used in several chemical products and also an efficient transportation fuel. In this review, we highlight the recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to methanol. The main efforts focused on the improvement of conventional Cu/ZnO based catalysts and the development of new catalytic systems targeting the specific needs for CO2 to methanol reactions (unfavourable thermodynamics, production of high amount of water and high methanol selectivity under high or full CO2 conversion). Major studies on the development of active and selective catalysts based on thermodynamics, mechanisms, nano-synthesis and catalyst design (active phase, promoters, supports, etc.) are highlighted in this review. Finally, a summary concerning future perspectives on the research and development of efficient heterogeneous catalysts for methanol synthesis from CO2 will be presented.

2.
Data Brief ; 24: 104010, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31193673

ABSTRACT

The modification of Cu-Zn catalysts with low amount of Al and Ga (Al+Ga = 3%) was investigated and data corresponding to its influence on the decomposition of the calcined precursors and on the nanomorphology and surface concentration of reduced catalysts were presented in this contribution. The data presented here are supplementary material of the catalysts presented in the research article "Structure and activity of Cu/ZnO catalysts co-modified with aluminium and gallium for methanol synthesis" published in Catalysis Today [1].

3.
RSC Adv ; 8(37): 20619-20629, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-35542371

ABSTRACT

The influence of aging of precipitates on the physical and catalytic properties of a copper/zinc oxide-aluminium (Cu/ZnO-Al) catalyst with an optimized composition (low Al concentration, Cu/Zn/Al = 68/29/3) prepared using co-precipitation has been investigated in detail. The change in the structure of precipitates with aging (from amorphous zincian georgeite to crystalline zincian malachite) strongly influences the micro- and nano-structure (Cu and ZnO crystallite size, exposed copper surface area, Cu-ZnO interactions and stability of ZnO) of the final Cu/ZnO-Al catalysts obtained after calcination and reduction of the precipitates. The results of catalytic activity in methanol synthesis from syngas show the higher intrinsic activity of the catalysts derived from aged zincian malachite precipitates as consequence of the increase in the exposed copper surface area and the Cu-ZnO contacts. The stability of catalysts under the reaction conditions was also improved in the catalysts derived from precipitates aged after crystallization of malachite. The catalyst derived from the precipitate removed close to the point of crystallization of malachite shows very poor activity in the methanol synthesis as consequence of its segregated large Cu crystallites in low contact with ZnO derived from the absence of carbonate retention after calcination of the precipitate and the presence of sodium species after conventional washing which favour the strong sintering and crystallization of Cu during reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...