Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 12028, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37491571

ABSTRACT

Animal sensory systems are tightly adapted to the demands of their environment. In the visual domain, research has shown that many species have circuits and systems that exploit statistical regularities in natural visual signals. The zebrafish is a popular model animal in visual neuroscience, but relatively little quantitative data is available about the visual properties of the aquatic habitats where zebrafish reside, as compared to terrestrial environments. Improving our understanding of the visual demands of the aquatic habitats of zebrafish can enhance the insights about sensory neuroscience yielded by this model system. We analyzed a video dataset of zebrafish habitats captured by a stationary camera and compared this dataset to videos of terrestrial scenes in the same geographic area. Our analysis of the spatiotemporal structure in these videos suggests that zebrafish habitats are characterized by low visual contrast and strong motion when compared to terrestrial environments. Similar to terrestrial environments, zebrafish habitats tended to be dominated by dark contrasts, particularly in the lower visual field. We discuss how these properties of the visual environment can inform the study of zebrafish visual behavior and neural processing and, by extension, can inform our understanding of the vertebrate brain.


Subject(s)
Visual Perception , Zebrafish , Animals , Visual Fields , Ecosystem , Brain
2.
Curr Biol ; 32(23): 5008-5021.e8, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36327979

ABSTRACT

Animals benefit from knowing if and how they are moving. Across the animal kingdom, sensory information in the form of optic flow over the visual field is used to estimate self-motion. However, different species exhibit strong spatial biases in how they use optic flow. Here, we show computationally that noisy natural environments favor visual systems that extract spatially biased samples of optic flow when estimating self-motion. The performance associated with these biases, however, depends on interactions between the environment and the animal's brain and behavior. Using the larval zebrafish as a model, we recorded natural optic flow associated with swimming trajectories in the animal's habitat with an omnidirectional camera mounted on a mechanical arm. An analysis of these flow fields suggests that lateral regions of the lower visual field are most informative about swimming speed. This pattern is consistent with the recent findings that zebrafish optomotor responses are preferentially driven by optic flow in the lateral lower visual field, which we extend with behavioral results from a high-resolution spherical arena. Spatial biases in optic-flow sampling are likely pervasive because they are an effective strategy for determining self-motion in noisy natural environments.


Subject(s)
Optic Flow , Animals , Zebrafish , Swimming
3.
Sci Rep ; 11(1): 8148, 2021 04 14.
Article in English | MEDLINE | ID: mdl-33854104

ABSTRACT

We present BonZeb-a suite of modular Bonsai packages which allow high-resolution zebrafish tracking with dynamic visual feedback. Bonsai is an increasingly popular software platform that is accelerating the standardization of experimental protocols within the neurosciences due to its speed, flexibility, and minimal programming overhead. BonZeb can be implemented into novel and existing Bonsai workflows for online behavioral tracking and offline tracking with batch processing. We demonstrate that BonZeb can run a variety of experimental configurations used for gaining insights into the neural mechanisms of zebrafish behavior. BonZeb supports head-fixed closed-loop and free-swimming virtual open-loop assays as well as multi-animal tracking, optogenetic stimulation, and calcium imaging during behavior. The combined performance, ease of use and versatility of BonZeb opens new experimental avenues for researchers seeking high-resolution behavioral tracking of larval zebrafish.


Subject(s)
Swimming/physiology , Video Recording/methods , Zebrafish/physiology , Animals , Behavior, Animal/physiology , Calcium/metabolism , Optogenetics/instrumentation , Software , Video Recording/instrumentation
4.
J Alzheimers Dis ; 61(1): 221-236, 2018.
Article in English | MEDLINE | ID: mdl-29154270

ABSTRACT

 Alzheimer's disease (AD) is one of the most common neurodegenerative pathologies for which there are no effective therapies to halt disease progression. Given the increase in the incidence of this disorder, there is an urgent need for pharmacological intervention. Unfortunately, recent clinical trials produced disappointing results. Molecular mechanisms of AD are converging on the notion that mitochondrial dysfunction, oxidative stress, and accumulation of dysfunctional proteins are involved in AD pathology. Previously, we have shown that a water-soluble formulation of Coenzyme Q10 (Ubisol-Q10), an integral part of the electron transport chain, stabilizes mitochondria and prevents neuronal cell death caused by neurotoxins or oxidative stress both in vitro and in vivo. In this study, we evaluated the neuroprotective effects of Ubisol-Q10 treatment in double transgenic AD mice. In the present study, we report that providing Ubisol-Q10 in drinking water (at a dose of ∼6 mg/kg/day) reduced circulating amyloid-ß (Aß) peptide, improved long term memory, preserved working spatial memory, and drastically inhibited Aß plaque formation in 18-month-old transgenic mice compared to an untreated transgenic group. Thus Ubisol-Q10 supplementation has the potential to inhibit the progression of neurodegeneration, leading to a better quality of life for humans suffering with AD.


Subject(s)
Alzheimer Disease/complications , Amyloid beta-Peptides/blood , Memory Disorders/drug therapy , Memory Disorders/etiology , Peptide Fragments/blood , Ubiquinone/analogs & derivatives , Vitamins/therapeutic use , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Disease Models, Animal , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/pathology , Mutation/genetics , Nerve Tissue Proteins/metabolism , Presenilin-1/genetics , Ubiquinone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...