Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 139(6): 3251, 2016 06.
Article in English | MEDLINE | ID: mdl-27369149

ABSTRACT

Acoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture. The LWA steers acoustic energy by preferential coupling to an input frequency and can be designed to steer from backfire to endfire, including broadside. This paper provides an analysis of resolution as a function of both input frequency and antenna length. Additionally, the resolution is compared to that achieved using an array of active acoustic elements.

2.
J Acoust Soc Am ; 139(6): 3325, 2016 06.
Article in English | MEDLINE | ID: mdl-27369158

ABSTRACT

The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality.

3.
Sci Rep ; 5: 13175, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26282067

ABSTRACT

We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85.

4.
J Acoust Soc Am ; 129(4): EL101-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21476615

ABSTRACT

Sound propagation in water-saturated granular sediments is known to depend on the sediment porosity, but few data in the literature address both the frequency and porosity dependency. To begin to address this deficiency, a fluidized bed technique was used to control the porosity of an artificial sediment composed of glass spheres of 265 µm diameter. Time-of-flight measurements and the Fourier phase technique were utilized to determine the sound speed for frequencies from 300 to 800 kHz and porosities from 0.37 to 0.43. A Biot-based model qualitatively describes the porosity dependence.


Subject(s)
Acoustics , Geologic Sediments , Glass , Models, Theoretical , Water , Calibration , Porosity
5.
J Acoust Soc Am ; 129(3): 1355-65, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21428499

ABSTRACT

Recent research has suggested the possibility of creating acoustic cloaks using metamaterial layers to eliminate the acoustic field scattered from an elastic object. This paper explores the possibility of applying the scattering cancellation cloaking technique to acoustic waves and the use of this method to investigate its effectiveness in cloaking elastic and fluid spheres using only a single isotropic elastic layer. Parametric studies showing the influence of cloak stiffness and geometry on the frequency dependent scattering cross-section of spheres have been developed to explore the design space of the cloaking layer. This analysis shows that an appropriately designed single isotropic elastic cloaking layer can provide up to 30 dB of scattering reduction for ka values up to 1.6. This work also illustrates the importance of accounting for the elasticity of the object and the relevant limitations of simplistic quasi-static analyses proposed in recent papers.


Subject(s)
Acoustics/instrumentation , Models, Theoretical , Elastic Modulus , Equipment Design , Scattering, Radiation , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...