Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 171(19): 4425-39, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24913445

ABSTRACT

BACKGROUND AND PURPOSE: The neuropeptide 26RFa and its cognate receptor GPR103 are involved in the control of food intake and bone mineralization. Here, we have tested, experimentally, the predicted ligand-receptor interactions by site-directed mutagenesis of GPR103 and designed point-substituted 26RFa analogues. EXPERIMENTAL APPROACH: Using the X-ray structure of the ß2 -adrenoceptor, a 3-D molecular model of GPR103 has been built. The bioactive C-terminal octapeptide 26RFa(19-26) , KGGFSFRF-NH2 , was docked in this GPR103 model and the ligand-receptor complex was submitted to energy minimization. KEY RESULTS: In the most stable complex, the Phe-Arg-Phe-NH2 part was oriented inside the receptor cavity, whereas the N-terminal Lys residue remained outside. A strong intermolecular interaction was predicted between the Arg(25) residue of 26RFa and the Gln(125) residue located in the third transmembrane helix of GPR103. To confirm this interaction experimentally, we tested the ability of 26RFa and Arg-modified 26RFa analogues to activate the wild-type and the Q125A mutant receptors transiently expressed in CHO cells. 26RFa (10(-6) M) enhanced [Ca(2+) ]i in wild-type GPR103-transfected cells, but failed to increase [Ca(2+) ]i in Q125A mutant receptor-expressing cells. Moreover, asymmetric dimethylation of the side chain of arginine led to a 26RFa analogue, [ADMA(25) ]26RFa(20-26) , that was unable to activate the wild-type GPR103, but antagonized 26RFa-evoked [Ca(2+) ]i increase. CONCLUSION AND IMPLICATIONS: Altogether, these data provide strong evidence for a functional interaction between the Arg(25) residue of 26RFa and the Gln(125) residue of GPR103 upon ligand-receptor activation, which can be exploited for the rational design of potent GPR103 agonists and antagonists.


Subject(s)
Models, Molecular , Neuropeptides/metabolism , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Molecular Sequence Data , Mutagenesis, Site-Directed , Oligopeptides/metabolism , Receptors, Adrenergic, beta-2/chemistry , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sequence Alignment , Structure-Activity Relationship
2.
Proteins ; 41(3): 334-49, 2000 Nov 15.
Article in English | MEDLINE | ID: mdl-11025545

ABSTRACT

Chloroplast thioredoxin m from the green alga Chlamydomomas reinhardtii is very efficiently reduced in vitro and in vivo in the presence of photoreduced ferredoxin and a ferredoxin dependent ferredoxin-thioredoxin reductase. Once reduced, thioredoxin m has the capability to quickly activate the NADP malate dehydrogenase (EC 1.1.1.82) a regulatory enzyme involved in an energy-dependent assimilation of carbon dioxide in C4 plants. This activation is the result of the reduction of two disulfide bridges by thioredoxin m, that are located at the N- and C-terminii of the NADP malate dehydrogenase. The molecular structure of thioredoxin m was solved using NMR and compared to other known thioredoxins. Thioredoxin m belongs to the prokaryotic type of thioredoxin, which is divergent from the eukaryotic-type thioredoxins also represented in plants by the h (cytosolic) and f (chloroplastic) types of thioredoxins. The dynamics of the molecule have been assessed using (15)N relaxation data and are found to correlate well with regions of disorder found in the calculated NMR ensemble. The results obtained provide a novel basis to interpret the thioredoxin dependence of the activation of chloroplast NADP-malate dehydrogenase. The specific catalytic mechanism that takes place in the active site of thioredoxins is also discussed on the basis of the recent new understanding and especially in the light of the dual general acid-base catalysis exerted on the two cysteines of the redox active site. It is proposed that the two cysteines of the redox active site may insulate each other from solvent attack by specific packing of invariable hydrophobic amino acids.


Subject(s)
Chlamydomonas reinhardtii/chemistry , Thioredoxins/chemistry , Amino Acid Sequence , Animals , Aspartic Acid/chemistry , Binding Sites , Chloroplast Thioredoxins , Cysteine/chemistry , Models, Chemical , Models, Molecular , Molecular Sequence Data , Motion , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Protein Structure, Tertiary , Sequence Homology, Amino Acid
3.
Biochemistry ; 39(15): 4259-66, 2000 Apr 18.
Article in English | MEDLINE | ID: mdl-10757974

ABSTRACT

The lipoate containing H-protein plays a pivotal role in the catalytic cycle of the glycine decarboxylase complex (GDC), undergoing reducing methylamination, methylene transfer, and oxidation. The transfer of the CH(2) group is catalyzed by the T-protein, which forms a 1:1 complex with the methylamine-loaded H-protein (Hmet). The methylamine group is then deaminated and transferred to the tetrahydrofolate-polyglutamate (H(4)FGlu(n)) cofactor of T-protein, forming methylenetetrahydrofolate-polyglutamate. The methylamine group is buried inside the protein structure and highly stable. Experimental data show that the H(4)FGlu(n) alone does not induce transfer of the methylene group, and molecular modeling also indicates that the reaction cannot take place without significant structural perturbations of the H-protein. We have, therefore, investigated the effect of the presence of the T-protein on the stability of Hmet. Addition of T-protein without H(4)FGlu(n) greatly increases the rate of the unloading reaction of Hmet, reducing the activation energy by about 20 kcal mol(-1). Differences of the (1)H and (15)N chemical shifts of the H-protein in its isolated form and in the complex with the T-protein show that the interaction surface for the H-protein is localized on one side of the cleft where the lipoate arm is positioned. This suggests that the role of the T-protein is not only to locate the tetrahydrofolate cofactor in a position favorable for a nucleophilic attack on the methylene carbon but also to destabilize the H-protein in order to facilitate the unlocking of the arm and initiate the reaction.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Amino Acid Oxidoreductases/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Pisum sativum/enzymology , Apoenzymes/metabolism , Binding Sites , Catalysis , Coenzymes/metabolism , Computer Simulation , Enzyme Stability , Formaldehyde/metabolism , Glycine Decarboxylase Complex , Glycine Decarboxylase Complex H-Protein , Glycine Dehydrogenase (Decarboxylating) , Hydrocarbons , Kinetics , Methane/analogs & derivatives , Methane/metabolism , Methylamines/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Polyglutamic Acid/analogs & derivatives , Polyglutamic Acid/metabolism , Protein Binding , Solutions , Tetrahydrofolates/metabolism , Thermodynamics , Thioctic Acid/metabolism
5.
Biochemistry ; 38(26): 8334-46, 1999 Jun 29.
Article in English | MEDLINE | ID: mdl-10387079

ABSTRACT

The lipoate-dependent H protein plays a pivotal role in the catalytic cycle of the glycine decarboxylase complex (GDC), undergoing reducing methylamination, methylene transfer, and oxidation. The local structure and backbone dynamics of the methylamine-loaded H (Hmet), oxidized H (Hox), and H apoprotein (Hapo) have been investigated in solution. Filtered NOESY experiments using a [13C]Hmet as well as comparison of the heteronuclear shifts between the Hox and Hmet proteins demonstrate that the methylamine group is located inside a cleft of the protein. Furthermore, this group appears to be locked in this configuration as indicated by the high value of the activation energy (37 kcal/mol) of the global unloading reaction and by its restricted mobility, deduced from 13C relaxation measurements. Comparisons of the 1H and 15N chemical shifts and 15N relaxation in the three forms suggest that part of the lipoyl-lysine arm interacts with the protein polypeptide in the Hox and Hmet. The major change induced by the loading of the methylamine group concerns the C-terminal helix whose mobility becomes completely restricted compared to those of the Hox and Hapo. This C-terminal helix exhibits different reorientational characteristics in the three forms, which can be explained in the Hapo by a model consisting of a twisting motion about an axis passing through the helix. Our results indicate that the model of a freely swinging arm proposed for other lipoate-containing proteins is not acceptable in solution for the GDC. The implication of this observation in terms of the mechanism of the interaction of the H protein with the T protein, its physiological partner during the catalytic cycle, is discussed.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Mitochondria/enzymology , Carbon Isotopes , Glycine Decarboxylase Complex , Glycine Decarboxylase Complex H-Protein , Glycine Dehydrogenase (Decarboxylating) , Methylamines/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Pisum sativum/enzymology , Plant Proteins/chemistry , Protein Conformation , Protons , Temperature , Thermodynamics , Thioctic Acid/analogs & derivatives , Thioctic Acid/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...