Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol Invest ; 44(9): 1897-1904, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33486704

ABSTRACT

BACKGROUND: High-density lipoprotein (HDL) is considered a complex plasma-circulating particle with subfractions that vary in function, size, and chemical composition. We sought to test the effects of HDL, and HDL subfractions on insulin secretion and cholesterol efflux in the ß-cell line MIN-6. METHODS: We used total HDL and HDL subfractions 2a, 2b, 3a, 3b, and 3c, isolated from human plasma, to test insulin secretion under different glucose concentrations as well as insulin content and cholesterol efflux in the insulinoma MIN-6 cell line. RESULTS: Incubation of MIN-6 cells with low glucose and total HDL increased insulin release two-fold. Meanwhile, when high glucose and HDL were used, insulin release increased more than five times. HDL subfractions 2a, 2b, 3a, 3b, and 3c elicited higher insulin secretion and cholesterol efflux than their respective controls, at both low and high glucose concentrations. The insulin content of the MIN-6 cells incubated with low glucose and any of the five HDL subclasses had a modest reduction compared with their controls. However, there were no statistically significant differences between each HDL subfraction on their capacity of eliciting insulin secretion, insulin content, or cholesterol efflux. CONCLUSIONS: HDL can trigger insulin secretion under low, normal, and high glucose conditions. We found that all HDL subfractions exhibit very similar capacity to increase insulin secretion and cholesterol efflux. This is the first report demonstrating that HDL subfractions act both as insulin secretagogues (under low glucose) and insulin secretion enhancers (under high glucose) in the MIN-6 cell line.


Subject(s)
Cholesterol/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Lipoproteins, HDL/blood , Adult , Animals , Cell Line, Tumor , Female , Glucose/pharmacology , Humans , Male , Mice , Middle Aged
2.
J Endocrinol Invest ; 43(8): 1061-1071, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32016916

ABSTRACT

PURPOSE: Type 2 diabetes (T2D) and low serum concentration of high-density lipoprotein cholesterol (HDL-c) are common coexisting metabolic disorders. ABCA1 variants have been shown to be associated to these conditions. We sought to test the combined effect of two ABCA1 gene common variants, rs2422493 (- 565C > T) and rs9282541 (R230C) on HDL-c levels and T2D risk. METHODS: Path analysis was conducted in 3,303 Mexican-mestizos to assess the specific contributions of rs2422493 and rs9282541 ABCA1 variants, insulin resistance, waist-to-height ratio (WHtR), and age on HDL-c levels and T2D risk. Participants were classified into four groups according to their ABCA1 variants carrier status: (i) the reference group carried wild type alleles for both ABCA1 variants (-/-), (ii) +/- were carriers of rs2422493 but non-carriers of rs9282541, (iii) -/+ for carriers of rs9282541 but not carriers of rs2422493 and (iv) carriers of minor alleles for both SNPs (+/+). Principal components from two previous genome-wide association studies were used to control for ethnicity. RESULTS: We identified significant indirect effects on T2D risk mediated by HDL-c in groups -/+ and +/+ (ß = 0.04; p = 0.03 and ß = 0.06; p < 0.01, respectively) in comparison to the -/- reference group. Low concentrations of HDL-c were directly and significantly associated with increased T2D risk (ß = -0.70; p < 0.01). WHtR, male gender, age, and insulin resistance were also associated with T2D risk (p < 0.05). There was no significant direct effect for any of the ABCA1 groups on T2D risk: p = 0.99, p = 0.58, and p = 0.91 for groups +/-, -/+, and +/+ respectively. CONCLUSIONS: The ABCA1 rs9282541 (R230C) allele is associated with T2D in Mexicans through its effect on lowering HDL-c levels. This is the first report demonstrating that HDL-c levels act as an intermediate factor between an ABCA1 variant and T2D.


Subject(s)
ATP Binding Cassette Transporter 1/genetics , Cholesterol, HDL/blood , Diabetes Mellitus, Type 2/epidemiology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adult , Biomarkers/analysis , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Female , Follow-Up Studies , Genome-Wide Association Study , Humans , Male , Mexico/epidemiology , Middle Aged , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...