Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1509, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707699

ABSTRACT

Macrophages are traditionally considered antigen-presenting cells. However, their ability to present antigen and the factors regulating macrophage MHCII expression are poorly understood. Here, we demonstrate that MHCII expression on murine intestinal macrophages is differentially controlled by their residence in the small intestine (SI) or the colon, their ontogeny and the gut microbiota. Monocyte-derived macrophages are uniformly MHCIIhi, independently of the tissue of residence, microbial status or the age of the mouse, suggesting a common monocyte differentiation pathway. In contrast, MHCII expression on long-lived, prenatally-derived Tim4+ macrophages is low after birth but significantly increases at weaning in both SI and colon. Furthermore, MHCII expression on colonic Tim4+, but not monocyte-derived macrophages, is dependent on recognition of microbial stimuli, as MHCII expression is significantly downregulated in germ-free, antibiotic-treated and MyD88 deficient mice. To address the function of MHCII presentation by intestinal macrophages we established two models of macrophage-specific MHCII deficiency. We observed a significant reduction in the overall frequency and number of tissue-resident, but not newly arrived, SI CD4+ T cells in the absence of macrophage-expressed MHCII. Our data suggest that macrophage MHCII provides signals regulating gut CD4+ T cell maintenance with different requirements in the SI and colon.


Subject(s)
Macrophages , Microbiota , Animals , Mice , Colon , Homeostasis , Intestine, Small/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Histocompatibility Antigens Class II/metabolism
2.
Infect Immun ; 90(2): e0022221, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34978927

ABSTRACT

Hypoxia-inducible transcription factor 1 (HIF-1) has been shown to enhance microbial killing and ameliorate the course of bacterial infections. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the gastrointestinal tract remains largely elusive. With the help of a publicly available gene expression data set, we inferred significant activation of HIF-1 after oral infection of mice with Salmonella enterica serovar Typhimurium. Immunohistochemistry and Western blot analyses confirmed marked HIF-1α protein stabilization, especially in the intestinal epithelium. This prompted us to analyze conditional Hif1a-deficient mice to examine cell type-specific functions of HIF-1 in this model. Our results demonstrate enhanced noncanonical induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells did not impact inflammatory gene expression, bacterial spread, or disease outcomes. In contrast, Hif1a deletion in myeloid cells enhanced intestinal Cxcl2 expression and reduced the cecal Salmonella load. In vitro, HIF-1α-deficient macrophages showed overall impaired transcription of mRNA encoding proinflammatory factors; however, the intracellular survival of Salmonella was not impacted by HIF-1α deficiency.


Subject(s)
Salmonella Infections , Salmonella typhimurium , Animals , Epithelial Cells/microbiology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intestinal Mucosa/microbiology , Macrophages , Mice , Salmonella Infections/genetics , Salmonella typhimurium/genetics
3.
EJNMMI Res ; 6(1): 44, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27234510

ABSTRACT

BACKGROUND: We aimed to determine the accuracy of laser Doppler perfusion imaging (LDPI) in an animal model for hind limb ischemia. METHODS: We used a murine (C57Bl/6 mice) ischemic hind limb model in which we compared LDPI with the clinically used (99m)Tc-sestamibi SPECT perfusion imaging (n = 7). In addition, we used the SPECT tracer (99m)Tc-pyrophosphate ((99m)Tc-PyP) to image muscular damage (n = 6). RESULTS: LDPI indicated a quick and prominent decrease in perfusion immediately after ligation, subsequently recovering to 21.9 and 25.2 % 14 days later in the (99m)Tc-sestamibi and (99m)Tc-PyP group, respectively. (99m)Tc-sestamibi SPECT scans also showed a quick decrease in perfusion. However, nearly full recovery was reached 7 days post ligation. Muscular damage, indicated by the uptake of (99m)Tc-PyP, was highest at day 3 and recovered to baseline levels at day 14 post ligation. Postmortem histology supported these findings, as a significantly increased collateral diameter was found 7 and 14 days after ligation and peak macrophage infiltration and TUNEL positivity was found on day 3 after ligation. CONCLUSIONS: Here, we indicate that LDPI strongly underestimates perfusion recovery in a hind limb model for profound ischemia.

SELECTION OF CITATIONS
SEARCH DETAIL
...