Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 28(10): 2451-2457, 2017 Oct 01.
Article in English | MEDLINE | ID: mdl-28961841

ABSTRACT

BACKGROUND: Third-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) such as osimertinib are the last line of targeted treatment of metastatic non-small-cell lung cancer (NSCLC) EGFR-mutant harboring T790M. Different mechanisms of acquired resistance to third-generation EGFR-TKIs have been proposed. It is therefore crucial to identify new and effective strategies to overcome successive acquired mechanisms of resistance. METHODS: For Amplicon-seq analysis, samples from the index patient (primary and metastasis lesions at different timepoints) as well as the patient-derived orthotopic xenograft tumors corresponding to the different treatment arms were used. All samples were formalin-fixed paraffin-embedded, selected and evaluated by a pathologist. For droplet digital PCR, 20 patients diagnosed with NSCLC at baseline or progression to different lines of TKI therapies were selected. Formalin-fixed paraffin-embedded blocks corresponding to either primary tumor or metastasis specimens were used for analysis. For single-cell analysis, orthotopically grown metastases were dissected from the brain of an athymic nu/nu mouse and cryopreserved at -80°C. RESULTS: In a brain metastasis lesion from a NSCLC patient presenting an EGFR T790M mutation, we detected MET gene amplification after prolonged treatment with osimertinib. Importantly, the combination of capmatinib (c-MET inhibitor) and afatinib (ErbB-1/2/4 inhibitor) completely suppressed tumor growth in mice orthotopically injected with cells derived from this brain metastasis. In those mice treated with capmatinib or afatinib as monotherapy, we observed the emergence of KRAS G12C clones. Single-cell gene expression analyses also revealed intratumor heterogeneity, indicating the presence of a KRAS-driven subclone. We also detected low-frequent KRAS G12C alleles in patients treated with various EGFR-TKIs. CONCLUSION: Acquired resistance to subsequent EGFR-TKI treatment lines in EGFR-mutant lung cancer patients may induce genetic plasticity. We assess the biological insights of tumor heterogeneity in an osimertinib-resistant tumor with acquired MET-amplification and propose new treatment strategies in this situation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Brain Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/antagonists & inhibitors , Lung Neoplasms/drug therapy , Piperazines/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Acrylamides , Afatinib , Aniline Compounds , Animals , Benzamides , Brain Neoplasms/enzymology , Brain Neoplasms/secondary , Carcinoma, Non-Small-Cell Lung/enzymology , Cisplatin/administration & dosage , Drug Resistance, Neoplasm , Female , Humans , Imidazoles/administration & dosage , Lung Neoplasms/enzymology , Male , Mice , Mice, Nude , Pemetrexed/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Quinazolines/administration & dosage , Random Allocation , Triazines/administration & dosage , Xenograft Model Antitumor Assays
2.
Oncogene ; 36(40): 5648-5657, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28581523

ABSTRACT

Although single base-pair resolution DNA methylation landscapes for embryonic and different somatic cell types provided important insights into epigenetic dynamics and cell-type specificity, such comprehensive profiling is incomplete across human cancer types. This prompted us to perform genome-wide DNA methylation profiling of 22 samples derived from normal tissues and associated neoplasms, including primary tumors and cancer cell lines. Unlike their invariant normal counterparts, cancer samples exhibited highly variable CpG methylation levels in a large proportion of the genome, involving progressive changes during tumor evolution. The whole-genome sequencing results from selected samples were replicated in a large cohort of 1112 primary tumors of various cancer types using genome-scale DNA methylation analysis. Specifically, we determined DNA hypermethylation of promoters and enhancers regulating tumor-suppressor genes, with potential cancer-driving effects. DNA hypermethylation events showed evidence of positive selection, mutual exclusivity and tissue specificity, suggesting their active participation in neoplastic transformation. Our data highlight the extensive changes in DNA methylation that occur in cancer onset, progression and dissemination.


Subject(s)
DNA Methylation , DNA, Neoplasm/metabolism , Neoplasms/genetics , Animals , Base Pairing , Enhancer Elements, Genetic , Genome, Human , Humans , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...