Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 130(11): 5858-5874, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32759503

ABSTRACT

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.


Subject(s)
Bacteria/immunology , Macrophage Activation , Macrophages, Peritoneal/immunology , Mitophagy/immunology , Sepsis/immunology , Animals , Female , Humans , Interferon-gamma/immunology , Lipopolysaccharides/immunology , Macrophages, Peritoneal/microbiology , Macrophages, Peritoneal/pathology , Male , Mice , Protein Kinases/immunology , RAW 264.7 Cells , Sepsis/microbiology , Sepsis/pathology
2.
Mol Cell ; 69(4): 539-550.e6, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29452635

ABSTRACT

Microbial or endogenous molecular patterns as well as pathogen functional features can activate innate immune systems. Whereas detection of infection by pattern recognition receptors has been investigated in details, sensing of virulence factors activities remains less characterized. In Drosophila, genetic evidences indicate that the serine protease Persephone belongs to a danger pathway activated by abnormal proteolytic activities to induce Toll signaling. However, neither the activation mechanism of this pathway nor its specificity has been determined. Here, we identify a unique region in the pro-domain of Persephone that functions as bait for exogenous proteases independently of their origin, type, or specificity. Cleavage in this bait region constitutes the first step of a sequential activation and licenses the subsequent maturation of Persephone to the endogenous cysteine cathepsin 26-29-p. Our results establish Persephone itself as an immune receptor able to sense a broad range of microbes through virulence factor activities rather than molecular patterns.


Subject(s)
Beauveria/enzymology , Drosophila Proteins/immunology , Drosophila melanogaster/immunology , Immunity, Innate/immunology , Receptors, Immunologic/metabolism , Serine Endopeptidases/immunology , Serine Proteases/immunology , Toll-Like Receptors/immunology , Animals , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/growth & development , Female , Male , Proteolysis , Serine Endopeptidases/metabolism , Serine Proteases/metabolism , Signal Transduction , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...