Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3020-3023, 2022 07.
Article in English | MEDLINE | ID: mdl-36085614

ABSTRACT

Micro Transdermal Interface Platforms (MicroTIPs) will combine minimally invasive microneedle arrays with highly miniaturized sensors, actuators, control electronics, wireless communications and artificial intelligence. These patch-like devices will be capable of autonomous physiological monitoring and transdermal drug delivery, resulting in increased patient adherence and devolved healthcare. In this paper, we experimentally demonstrate the feasibility of controlled transdermal drug delivery using a combination of 500 µm tall silicon microneedles, a commercial micropump, pressure and flow sensors, and bespoke electronics. Using ex-vivo human skin samples and a customized application/retraction system, leak-free delivery of volumes ranging from 0.7-1.1 mL has been achieved in under one hour. Clinical Relevance - This work experimentally confirms the feasibility of combining micropumps with microneedle arrays for applications in transdermal drug delivery.


Subject(s)
Artificial Intelligence , Needles , Communication , Drug Delivery Systems , Electronics , Humans
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 2573-2576, 2022 07.
Article in English | MEDLINE | ID: mdl-36085690

ABSTRACT

Microneedle-based transdermal drug delivery is considered an attractive alternative to conventional injections using hypodermic needles due to its minimally invasive and painless nature; this has the potential to improve patient adherence to medication regimens. Hollow microneedles (MNs) are sharp, sub-millimeter protrusions with a channel that serves as a fluidic interface with the skin. This technology could be coupled with micro-pumps, embedded sensors, actuators and electronics to create Micro Transdermal Interface Platforms - smart, wearable infusion systems capable of delivering precise microdoses over a prolonged period. Using 500 µm tall hollow microneedles, ex-vivo human skin and a customized application/retraction device, this work focuses on comparing two infusion control strategies, namely 'set pressure' (SP) and 'set flow' (SF) infusion. It was found that flow-controlled infusion was capable of delivering higher volumes than pressure-driven delivery, and a mean volume of 3.8 mL was delivered using a set flowrate of 50 µL/minute. This suggests that flow driven delivery is a better control strategy and confirms that MN array retraction is beneficial for transdermal MN infusion.


Subject(s)
Body Fluids , Needles , Electronics , Humans , Patient Compliance , Skin
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 846-849, 2022 07.
Article in English | MEDLINE | ID: mdl-36086509

ABSTRACT

Microneedle-based electrodes have attracted significant attention for the monitoring of physiological signals, including ECG, EMG, and E OG, as they have the potential to eliminate the skin preparation and stability issues associated with conventional wet gel electrodes. This paper describes the development of a polymeric flexible microneedle electrode (FMNE) that does not require skin abrasion and can be used for long-term ECG monitoring. Fabricated using a combination of epoxy resin microneedles bonded to a flexible substrate, the performance of the FMNE was compared to that of a conventional wet-gel electrode by simultaneously capturing the ECG signal using both electrodes, and estimating the signal-to-noise ratio (SNR) of each. Results show that the flexible electrode can acquire ECG signals in which all the characteristic components of the wave are visible, and that are comparable in quality to those obtained using commercial wet electrodes. Bland-Altman plots were drawn to validate the performance of FMNE, and show that the mean difference ± standard deviation in SNR obtained using wet electrodes and FMNE was [Formula: see text]. Clinical Relevance- These microneedle-based 'dry electrodes' could be used in long-term monitoring of biopotential activity.


Subject(s)
Electrocardiography , Needles , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...