Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38996061

ABSTRACT

Downsizing zeolite crystals is a rational solution to address the challenge of slow adsorption rates for industrial applications. In this work, we report an environmentally friendly seed-assisted method for synthesizing nanoscale zeolite P, which has been shown to be promising for binary separations. The potassium-exchanged form of nanoagglomerates demonstrates dramatically enhanced CO2 adsorption capacity, improved diffusion rate, and separation performance. Single-component CO2 adsorption at equilibrium demonstrated higher CO2 uptake and faster adsorption kinetics (ca. 1400 s vs >130000 s) for nanosized zeolite (KP1) compared to its micron-sized (KP2) counterpart. The diffusion kinetics analysis revealed the relation between the crystal size and the transport mechanism. The micron-sized KP2 sample was primarily governed by a surface barrier resistance mechanism, while in KP1, the diffusion process involved both intracrystalline and surface barrier resistance, facilitating the surface diffusion process and enhancing the overall diffusion rate. Breakthrough curve analysis confirmed these findings as fast and efficient CO2/N2 and CO2/CH4 separations recorded for the nanosized sample. The results showed remarkably enhanced breakthrough time for KP2 vs KP1 in CO2/N2 (1.0 vs 10.9 min) and CO2/CH4 (1.1 vs 9.9 min) mixtures, along with much higher adsorption capacity for CO2/N2 (0.18 vs 1.33 mmol/g) and CO2/CH4 (0.18 vs 1.21 mmol/g) mixtures. The set of experimental data demonstrates the importance of zeolite crystal engineering for improving the gas separation performance of processes involving CO2, N2, and CH4.

2.
Langmuir ; 39(45): 15962-15973, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37929920

ABSTRACT

The efficient separation and adsorption of critical gases are, more than ever, a major focus point in important energy processes, such as CH4 enrichment of biogas or natural gas, CO2 separation and capture, and H2 purification and storage. Thanks to its physicochemical properties, cation-exchanged chabazite is a potent zeolite for such applications. Previous computational screening investigations have mostly examined chabazites exchanged with monovalent cations. Therefore, in this contribution, periodic density functional theory (DFT) calculations in combination with dispersion corrections have been used for a systematic screening of divalent cation exchanged chabazite zeolites. The work focuses on cheap and readily available divalent cations, Ca(II), Mg(II), and Zn(II), Fe(II), Sn(II), and Cu(II) and investigates the effect of the cation nature and location within the framework on the adsorption selectivity of chabazite for specific gas separations, namely, CO2/CH4, N2/CH4, and N2/H2. All the cationic adsorption sites were explored to describe the diversity of sites in a typical experimental chabazite with a Si/Al ratio close to 2 or 3. The results revealed that Mg-CHA is the most promising cation for the selective adsorption of CO2. These predictions were further supported by ab initio molecular dynamics simulations performed at 300 K, which demonstrated that the presence of CH4 has a negligible impact on the adsorption of CO2 on Mg-CHA. Ca(II) was found to be the most favorable cation for the selective adsorption of H2 and CO2. Finally, none of the investigated cations were suitable for the preferential capture of N2 and H2 in the purification of CH4 rich mixtures. These findings provide valuable insights into the factors influencing the adsorption behavior of N2, H2, CH4, and CO2 and highlight the crucial role played by theoretical calculations and simulations for the optimal design of efficient adsorbents.

3.
Nat Chem ; 14(11): 1319-1324, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36038772

ABSTRACT

Adsorption on various adsorbents of hydrogen and helium at temperatures close to their boiling points shows, in some cases, unusually high monolayer capacities. The microscopic nature of these adsorbate phases at low temperatures has, however, remained challenging to characterize. Here, using high-resolution cryo-adsorption studies together with characterization by inelastic neutron scattering vibration spectroscopy, we show that, near its boiling point (~20 K), H2 adsorbed on a well-ordered mesoporous silica forms a two-dimensional monolayer with a density more than twice that of bulk-solid H2, rather than a bilayer. Theoretical studies, based on thorough first-principles calculations, rationalize the formation of such a super-dense phase. The strong compression of the hydrogen surface layer is due to the excess of surface-hydrogen attraction over intermolecular hydrogen repulsion. Use of this super-dense hydrogen monolayer on an adsorbent might be a feasible option for the storage of hydrogen near its boiling point, compared with adsorption at 77 K.

4.
Nat Commun ; 13(1): 282, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35022390

ABSTRACT

Metal-organic frameworks (MOFs) are commended as photocatalysts for H2 evolution and CO2 reduction as they combine light-harvesting and catalytic functions with excellent reactant adsorption capabilities. For dynamic processes in liquid phase, the accessibility of active sites becomes a critical parameter as reactant diffusion is limited by the inherently small micropores. Our strategy is to introduce additional mesopores by selectively removing one ligand in mixed-ligand MOFs via thermolysis. Here we report photoactive MOFs of the MIL-125-Ti family with two distinct mesopore architectures resembling either large cavities or branching fractures. The ligand removal is highly selective and follows a 2-step process tunable by temperature and time. The introduction of mesopores and the associated formation of new active sites have improved the HER rates of the MOFs by up to 500%. We envision that this strategy will allow the purposeful engineering of hierarchical MOFs and advance their applicability in environmental and energy technologies.

5.
J Colloid Interface Sci ; 579: 489-507, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32622098

ABSTRACT

Over the last two decades, in parallel to the rise of ordered mesoporous silica, porous nanostructured polymer-silica composites have attracted the interest of material scientists due to their promising perspectives of application as sorbents, ion-exchangers, supports, and catalysts. While knowledge is available regarding their synthesis and applications, understanding and controlling their pore properties in order to rationalize their performances remain challenging tasks. Greater knowledge is therefore needed regarding their precise characterization, especially using gas adsorption. To this aim, mesoporous polymer-silica nanocomposites were synthesized from two ordered mesoporous silica materials using a pore-surface restricted polymerization technique. Hydrophobic polystyrene, PS, and hydrophilic poly(2-hydroxyethyl methacrylate), PHEMA, were specifically confined and polymerized in the pores of high-quality SBA-15 and KIT-6 silicas of different pore sizes. The physico-chemical characteristics of the resulting hybrid materials were probed in detail using gas physisorption at cryogenic temperatures (Ar at 87 K and N2 at 77 K). The polymer loadings and the interactions between the silica host and the polymer were investigated using thermogravimetric analysis coupled with differential thermal analysis (TGA-DTA) and attenuated total reflection infrared spectroscopy (ATR-FTIR). The effects of the pore structure, mode pore size and presence or absence of intra-wall pores in the silica hosts on the final composite characteristics were assessed as a function of the polymer type and loading. Two different polymer filling mechanisms were identified as a function of the polymer-silica interactions, resulting in important changes on the pore topology of the composites. The results of this study allow a better understanding of the nature of the confined interactions between hydrophilic and hydrophobic polymers and large pore mesoporous silicas and shed some light on fundamental aspects regarding the design of silica-based composites.

6.
J Am Chem Soc ; 141(33): 12989-12993, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31381859

ABSTRACT

Alignment of metal-organic framework (MOF) crystals has previously been performed via careful control of oriented MOF growth on substrates, as well as by dynamic magnetic alignment. We show here that bromobenzene-suspended microrod crystals of the MOF NU-1000 can also be dynamically aligned via electric fields, giving rise to rapid electrooptical responses. This method of dynamic MOF alignment opens up new avenues of MOF control which are important for integration of MOFs into switchable electronic devices as well as in other applications such as reconfigurable sensors or optical systems.

7.
Chem Commun (Camb) ; 55(15): 2190-2193, 2019 Feb 14.
Article in English | MEDLINE | ID: mdl-30702096

ABSTRACT

Metal-organic frameworks (MOFs) hold significant potential for use in gas storage, sensing and catalysis. To uncover this potential, MOF processing must develop in line with MOF materials. Here, direct ink writing-based 3D printing of UiO-66 MOF composites and their thermal treatment give mechanically stable yet highly porous composites effective for the catalytic breakdown of methyl-paraoxon, a simulant of highly toxic organophosphate nerve agents.

8.
Sci Rep ; 9(1): 388, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30675014

ABSTRACT

We demonstrate for the first time the direct stereolithographic 3D printing of an extrinsically self-healing composite, comprised of commercial photocurable resin modified with anisole and PMMA-filled microcapsules. The composites demonstrate solvent-welding based autonomous self-healing to afford 87% recovery of the initial critical toughness. This work illustrates the potential of stereolithographic printing to fabricate self-healing composites with user-defined structures, avoiding the need for extensive rheological optimization of printing inks, like in direct-write 3D printing. Importantly, this work also demonstrates the inclusion of microcapsules into 3D printing resins to incorporate additional functionality into printed composites, which could be adapted for applications beyond self-healing materials.

9.
Adv Mater ; 30(16): e1704439, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29479756

ABSTRACT

The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications.

10.
Langmuir ; 34(4): 1376-1385, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29293354

ABSTRACT

Carbon dioxide was shown to identify surface basic properties of nitrogen-substituted microporous and mesoporous silicas, in addition to conventional basic oxides, by a detailed study using isotherm and heat of adsorption measurements as well as by infrared spectroscopy. A hydrogen-bonded weak interaction was primarily observed between CO2 and silanol (Si-OH) and silamine (Si-NH-Si) groups. The heat of adsorption of CO2 demonstrated that the latter adspecies were formed preferentially over the former, although a much higher amount of linear CO2 adspecies were found on SBA-15 mesoporous silica because of the presence of a large quantity of silanol groups on its surface. Carbamate-type chemisorbed adspecies were not detected on silamino sites, whereas carbonate-type adspecies were formed on alkali ion-exchanged zeolites and also residual sodium ions on the surface of silicalite-1. CO2 was shown to be a successful probe molecule for identifying weakly interactive hydrogen-bonding sites, and it has potential as a surface probe for strongly interactive nucleophilic sites derived from alkaline ions or a methylated silamino group, Si-N(CH3)-Si.

11.
ACS Omega ; 3(12): 17496-17510, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458354

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are considered as promising next-generation nanocarriers for health-related applications. However, their effectiveness mostly relies on their efficient and surface-specific functionalization. In this contribution, we explored different strategies for the rational multistep synthesis of functional MCM-48-type MSNs with selectively created active inner and/or external surfaces. Functional groups were first installed using a combination of (delayed) co-condensation and post-grafting procedures. Both amine [(3-aminopropyl)triethoxysilane (APTS)] and thiol [(3-mercaptopropyl)trimethoxysilane (MPTS)] silanes were used, in various addition sequences. Following this, the different platforms were further functionalized with polyethylene glycol and/or with a pro-chelate ligand used as a magnetic resonance imaging contrast agent (diethylenetriaminepentaacetic acid chelates) and/or loaded with quercetin and/or grafted with an organic dye (rhodamine). The efficiency of the multiple grafting strategies and the effects on the MSN carrier properties are presented. Finally, the colloidal stability of the different systems was evaluated in physiological media, and preliminary tests were performed to verify their drug release capability. The use of MPTS appeared beneficial when compared to APTS in delayed co-condensation procedures to preserve both selective distribution of the functional groups, reactive functionality, and pore ordering. Our results provide in-depth insights into the efficient design of (multi)functional MSNs and especially on the crucial role played by the sequence of step-by-step functionalization methods aiming to produce multipurpose and stable bioplatforms.

12.
Chem Soc Rev ; 46(2): 389-414, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-27757469

ABSTRACT

This review focuses on important aspects of applying physisorption for the pore structural characterization of hierarchical materials such as mesoporous zeolites. During the last decades major advances in understanding the adsorption and phase behavior of fluids confined in ordered nanoporous materials have been made, which led to major progress in the physisorption characterization methodology (summarized in the 2015 IUPAC report on physisorption characterization). Here we discuss progress and challenges for the physisorption characterization of nanoporous solids exhibiting various levels of porosity from micro- to macropores. While physisorption allows one to assess micro- and mesopores, a widely employed method for textural analysis of macroporous materials is mercury porosimetry and we also review important insights associated with the underlying mechanisms governing mercury intrusion/extrusion experiments. Hence, although the main focus of this review is on physical adsorption, we strongly emphasize the importance of combining advanced physical adsorption with other complementary experimental techniques for obtaining a reliable and comprehensive understanding of the texture of hierarchically structured materials.

13.
Nanoscale ; 5(23): 11499-511, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24178890

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are used in drug delivery and cell tracking applications. As Mn(2+) is already implemented as a "positive" cell contrast agent in preclinical imaging procedures (in the form of MnCl2 for neurological studies), the introduction of Mn in the porous network of MSNs would allow labelling cells and tracking them using MRI. These particles are in general internalized in endosomes, an acidic environment with high saline concentration. In addition, the available MSN porosity could also serve as a carrier to deliver medical/therapeutic substances through the labelled cells. In the present study, manganese oxide was introduced in the porous network of MCM-48 silica nanoparticles (Mn-M48SNs). The particles exhibit a narrow size distribution (~140 nm diam.) and high porosity (~60% vol.), which was validated after insertion of Mn. The resulting Mn-M48SNs were characterized by TEM, N2 physisorption, and XRD. Evidence was found with H2-TPR, and XPS characterization, that Mn(II) is the main oxidation state of the paramagnetic species after suspension in water, most probably in the form of Mn-OOH. The colloidal stability as a function of time was confirmed by DLS in water, acetate buffer and cell culture medium. In NMR data, no significant evidence of Mn(2+) leaching was found in Mn-M48SNs in acidic water (pH 6), up to 96 hours after suspension. High longitudinal relaxivity values of r1 = 8.4 mM(-1) s(-1) were measured at 60 MHz and 37 °C, with the lowest relaxometric ratios (r2/r1 = 2) reported to date for a Mn-MSN system. Leukaemia cells (P388) were labelled with Mn-M48SNs and nanoparticle cell internalization was confirmed by TEM. Finally, MRI contrast enhancement provided by cell labelling with escalated incubation concentrations of Mn-M48SNs was quantified at 1 T. This study confirmed the possibility of efficiently confining Mn into M48SNs using incipient wetness, while maintaining an open porosity and relatively high pore volume. Because these Mn-labelled M48SNs express strong "positive" contrast media properties at low concentrations, they are potentially applicable for cell tracking and drug delivery methodologies.


Subject(s)
Chlorides/chemistry , Contrast Media/chemistry , Manganese Compounds/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/metabolism , Contrast Media/toxicity , Hydrogen/chemistry , Hydrogen-Ion Concentration , Magnetic Resonance Imaging , Mice , Nanoparticles/toxicity , Oxidation-Reduction , Porosity , Surface Properties , Temperature , Water/chemistry
14.
Dalton Trans ; 42(21): 7795-802, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23552301

ABSTRACT

Two novel Co-based metal-organic frameworks (MOFs) were synthesised and characterised using an asymmetrically binding ligand, 4-(4'-carboxyphenyl)-1,2,4 triazole (Hcpt). The isolated [Co3(II)(µ3-O)(OH)(cpt)3(H2O)2]n·xH2O·yDMF, Co-MOF1, exhibits a rhombohedral crystal structure (space group, P63/mc), with a trinuclear cobalt core that resembles the MIL88 series. This MOF shows paramagnetic behaviour down to 2 K with no saturation of magnetisation up to 7 T. This is presumably due to a geometrically frustrated triangular arrangement of Co spins. The two-dimensional complex, [Co(II)(cpt)(N3)]n, Co-MOF2, crystallises in a monoclinic crystal system (space group, C2/m). The magnetic measurements reveal metamagnetic behaviour for this complex with a critical field in the range of 700-1000 Oe.


Subject(s)
Cobalt/chemistry , Magnets/chemistry , Organometallic Compounds/chemistry , Triazoles/chemistry , Crystallography, X-Ray , Models, Molecular , Organometallic Compounds/chemical synthesis , Triazoles/chemical synthesis
15.
Inorg Chem ; 52(4): 1673-5, 2013 Feb 18.
Article in English | MEDLINE | ID: mdl-23379911

ABSTRACT

A luminescent triarylboron ligand functionalized with three carboxylic groups has been synthesized and fully characterized. Its use in boron-containing metal-organic frameworks (B-MOFs) has been demonstrated by the synthesis and isolation of a Zn(II)B-MOF compound (B-MOF-1). The crystals of B-MOF-1 belong to the cubic space group F432 with 8-fold interpenetrated networks and ∼21% void space. B-MOF-1 exhibits blue fluorescence and is capable of modest gas sorption of N(2), argon, and CO(2).


Subject(s)
Boron Compounds/chemistry , Carboxylic Acids/chemistry , Luminescence , Organometallic Compounds/chemistry , Zinc/chemistry , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis
17.
Phys Chem Chem Phys ; 14(16): 5651-61, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22428163

ABSTRACT

The thermoresponsive polymer poly-N-isopropylacrylamide (PNIPAAM) was grafted in mesoporous SBA-15 silica. The grafting process consists of three steps: (i) increasing the amount of surface silanol groups of SBA-15 by hydroxylation, (ii) attachment of an anchor (1-(trichlorosilyl)-2-(m/p-(chloromethylphenyl)ethane) and finally (iii) the polymerization of the monomers (NIPAAM) onto the anchor. After each step, the materials were characterized regarding the porosity, using inert gas (argon, nitrogen) physisorption measurements. Also, the structure was investigated by small-angle X-ray diffraction analysis and thermogravimetric analysis was used for determination of the amount of grafted material. A total of 17% by weight of organic material was introduced in the porous host and the structure was preserved during the grafting process. Physisorption measurements revealed that the anchor is mainly located in the intrawall pores present in SBA-15. Consequently, the polymer is preferentially located in the intrawall pores or in the vicinity thereof. The final mesopore volume is 0.47 cm(3) g(-1) as compared to 0.96 cm(3) g(-1) for the pure SBA-15. The surprisingly large loss of mesopore volume and an almost constant mesopore diameter is consistent with a partial sealing of the mesopore volume in the composite materials. The potential thermocontrol combined with the large mesoporosity and the possible "storage space" provided by the sealed mesopore volume leads to a material with possibilities for various applications.


Subject(s)
Acrylic Resins/chemistry , Silicon Dioxide/chemistry , Adsorption , Gases/chemistry , Porosity , Surface Properties
18.
Chem Commun (Camb) ; 47(37): 10473-5, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21858306

ABSTRACT

We report here on an efficient one-step-impregnation method to synthesize crystalline mesoporous bimetal oxides (e.g. NiFe(2)O(4), CuFe(2)O(4), Cu/CeO(2)) using mesoporous silicas as hard templates under optimized mixing conditions. This new procedure enables a true replication of the mesostructure with high yield and phase purity, while retaining particle morphology of the template.

19.
Chemistry ; 17(15): 4254-65, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21387425

ABSTRACT

The influence of pore surface functionalities in mesoporous SBA-15 silica on the stability of a model olefin metathesis catalyst, namely Grubbs I, is substantiated. In particular, it is demonstrated that the nature of the interaction between the ruthenium complex and the surface is strongly depending on the presence of surface silanols. For this study, differently functionalized mesoporous SBA-15 silica materials were synthesized according to standard procedures and, subsequently, the Grubbs I catalyst was incorporated into these different host materials. All of the materials were thoroughly characterized by elemental analyses, nitrogen physisorption at -196 °C, thermogravimetric analyses, solid-state NMR spectroscopy, and infrared spectroscopy (ATR-IR). By such in-depth characterization of the materials, it became possible to achieve models for the surface/catalyst interactions as a function of surface functionalities in SBA-15; for example, in the case of purely siliceous silanol-rich SBA-15, octenyl-silane modified SBA-15, and silylated equivalents. It was evidenced that large portions of the chemisorbed species that are detected spectroscopically arise from interactions between the tricyclohexylphosphine and the surface silanols. A catalytic study using diethyldiallylmalonate in presence of the various functionalized silicas shows that the presence of surface silanols significantly decreases the longevity of the ring-closing metathesis catalyst, whereas the passivation of the surface by trimethylsilyl groups slows down the catalysis rate, but does not affect significantly the lifetime of the catalyst. This contribution thus provides new insights into the functionalization of SBA-15 materials and the role of surface interactions for the grafting of organometallic complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...