Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 52(47): 12303-7, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24123466

ABSTRACT

Great balls of fire: C60 and Y3 N@C80 were connected to the same oligo(phenyleneethynylene) unit to investigate their structural and photophysical properties. NMR investigations revealed a fulleroid structure for the Y3 N@C80 derivative, and both dyads gave rise to columnar phases with core-shell cylinders. The black and gray spheres represent the fullerene core units of the Y3 N@C80 derivative, which is an ideal candidate to be involved in energy and electron transfer processes.

2.
Nanoscale ; 5(4): 1507-16, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23306456

ABSTRACT

Self-assembly of nanoparticles (NPs) into tailored structures is a promising strategy for the production and design of materials with new functions. In this work, 2D arrays of iron oxide NPs with interparticle distances tuned by grafting fatty acids and dendritic molecules at the NPs surface have been obtained over large areas with high density using the Langmuir-Blodgett technique. The anchoring agent of molecules and the Janus structure of NPs are shown to be key parameters driving the deposition. Finally the influence of interparticle distance on the collective magnetic properties in powders and in monolayers is clearly demonstrated by DC and AC SQUID measurements. The blocking temperature T(B) increases as the interparticle distance decreases, which is consistent with the fact that dipolar interactions are responsible for this increase. Dipolar interactions are found to be stronger for particles assembled in thin films compared to powdered samples and may be described by using the Vogel Fulcher model.


Subject(s)
Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Models, Chemical , Computer Simulation , Dendrimers/chemistry , Magnetic Fields , Materials Testing , Powders
3.
Beilstein J Org Chem ; 8: 349-70, 2012.
Article in English | MEDLINE | ID: mdl-22509204

ABSTRACT

Liquid-crystalline nanoparticles represent an exciting class of new materials for a variety of potential applications. By combining supramolecular ordering with the fluid properties of the liquid-crystalline state, these materials offer the possibility to organise nanoparticles into addressable 2-D and 3-D arrangements exhibiting high processability and self-healing properties. Herein, we review the developments in the field of discrete thermotropic liquid-crystalline nanoparticle hybrids, with special emphasis on the relationship between the nanoparticle morphology and the nature of the organic ligand coating and their resulting phase behaviour. Mechanisms proposed to explain the supramolecular organisation of the mesogens within the liquid-crystalline phases are discussed.

4.
Chem Commun (Camb) ; 47(2): 734-6, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21060927

ABSTRACT

New phosphorescent and room-temperature liquid-crystalline materials were obtained by combining dicyanometallate anions with dicationic bisamidinium based tectons bearing four peripheral lipophilic pyrogallate moieties.

5.
J Nanosci Nanotechnol ; 10(10): 6800-4, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21137800

ABSTRACT

We report here the synthesis and characterization of novel diethynylbenzene-based liquid crystalline semiconductor (P1) for organic thin-film transistors (OTFTs). Compound P1 was synthesized by the Sonogashira coupling reaction between 2-bromo-5-(4-hexylthiophen-2-yl)thieno[3,2-b]thiophene and 1,4-bis(dodecyloxy)-2,5-diethynylbenzene. Top contact OTFTs were fabricated by spin casting with 2 wt% solution of P1 in chloroform and their best performance, which exhibited a hole mobility of 4.5 x 10(-5) cm2/Vs, was showed after annealing of the films at liquid crystalline temperature. Time-of-flight (TOF) mobility measured at liquid crystalline phase was observed to be 1.5 x 10(-6) cm2/Vs for both positive and negative carriers. These results indicate that the liquid crystallinity helps to improve the molecular packing and enhance charge mobility for P1. These advantages can be applicable to design and construct solution-processable OTFT materials for electronic applications.

6.
Inorg Chem ; 49(18): 8601-19, 2010 Sep 20.
Article in English | MEDLINE | ID: mdl-20718488

ABSTRACT

A series of 10 different mesomorphic semidendrimeric tridentate ligands L5-L14 grafted with terminal cyanobiphenyl groups have been synthesized. Upon reaction with Ln(NO(3))(3) (Ln = trivalent lanthanide), the central 2,6-bis(N-ethylbenzimidazol-2-yl)pyridine unit is meridionally tricoordinated to the metal to give rodlike monomeric [Ln(Lk)(NO(3))(3)] and H-shaped dimeric [Ln(2)(Lk)(2)(NO(3))(6)] complexes. For the small Lu(III) cation, the monomeric complexes are quantitatively formed in a noncoordinating CD(2)Cl(2) solution. For larger cations (Ln = Eu, Pr), the thermodynamic equilibrium 2[Ln(Lk)(NO(3))(3)] ↔ [Ln(2)(Lk)(2)(NO(3))(6)] can be evidenced across the complete ligand series. Detailed thermodynamic studies show that the dimeric complexes result from the formation of primary intermetallic nitrate bridges whose strength depends on the metallic size. For each complex, secondary nonspecific interstrand van der Waals interactions produce nonartifactual enthalpy/entropy compensation. In the absence of solvent, only the complexes with the most extended ligands L5 and L6 produce thermotropic mesophases. Layered organizations are dominant (smectic A) with the induction of nematogenic behavior at high temperature when interstrand interactions are modulated by methyl substitutions. Correlations between the trend of dimerization and the sequences of thermotropic mesophases are attempted.

7.
Small ; 6(12): 1341-6, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20486228

ABSTRACT

A fluid nematic-like phase is induced in monodisperse iron oxide nanoparticles with a diameter of 3.3 nm. This supramolecular arrangement is governed by the covalent functionalization of the nanoparticle surface with cyanobiphenyl-based ligands as mesogenic promoters. The design and synthesis of these hybrid materials and the study of their mesogenic properties are reported. In addition, the modifications of the magnetic properties of the hybridized nanoparticles are investigated as a function of the different grafted ligands. Owing to the rather large interparticular distances (about 7 nm), the dipolar interaction between nanoparticles is shown to play only a minor role. Conversely, the surface magnetic anisotropy of the particles is significantly affected by the surface derivatization.


Subject(s)
Magnetics , Nanoparticles/chemistry , Ferric Compounds/chemistry , Nanotechnology
8.
J Phys Chem B ; 113(3): 734-8, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19105685

ABSTRACT

The formation of ferrimagnetic films of 39 nm magnetite nanoparticles functionalized by stilbene derivatives has been studied using the Langmuir-Blodgett technique. The stilbene moieties are grafted to the particles either via a phosphonate or a carboxylate group; in both cases the nanoparticles display similar isotherms although the microscopic initial and final states of the films are different. Two different mechanisms of film formation are proposed, based on the inorganic-organic bond stability.

9.
Chemistry ; 14(12): 3544-52, 2008.
Article in English | MEDLINE | ID: mdl-18381741

ABSTRACT

First- and second-generation dendrimers with an isocyanide group as the focal functional point (CN-G(n); n: 1,2) and their corresponding organometallic complexes [MCl(CN-G(n))] (M: Au, Cu), [{CuCl(CN-G(n))2}2], and trans-[MI2(CN-G(n))2] (M: Pd, Pt) have been synthesized. The free ligands and the first-generation complexes do not show mesogenic behavior, but all of the second-generation complexes display a thermotropic micellar cubic mesophase, over a large temperature range, and some of them directly at room temperature. The structure of the mesophase consists of the packing of two, discrete polyhedral micellar aggregates in a three-dimensional cubic Im$\bar 3$m lattice.


Subject(s)
Copper/chemistry , Cyanides/chemistry , Gold/chemistry , Organometallic Compounds/chemical synthesis , Palladium/chemistry , Platinum/chemistry , Dendrimers/chemistry , Macromolecular Substances/chemistry , Micelles , Molecular Structure , Organometallic Compounds/chemistry , Phase Transition
10.
Chem Commun (Camb) ; (2): 181-3, 2008 Jan 14.
Article in English | MEDLINE | ID: mdl-18092080

ABSTRACT

The judicious tuning of simple thermodynamic parameters controlling dimerization processes in solution induces a rational switch between smectic and nematic organizations in thermotropic lanthanide-containing liquid crystals.

12.
Chemistry ; 13(31): 8696-713, 2007.
Article in English | MEDLINE | ID: mdl-17665377

ABSTRACT

The connection of twelve peripheral and divergent dodecyloxy chains to a central tridentate aromatic binding unit provides the dodecacatenar ligand L11, for which room-temperature mesomorphism is detected. An enthalpically unbalanced large melting entropy (DeltaSmL11=226 J mol(-1) K(-1)) results from the programmed microsegregation induced in the crystalline phase, a phenomenon which is maintained in the associated lanthanide complexes [Ln(L11)(NO3)3] and [Ln(L11)(CF3CO2)3]2. Low-temperature melting processes (-43

Subject(s)
Entropy , Lanthanoid Series Elements/chemistry , Liquid Crystals/chemistry , Luminescence , Organometallic Compounds/chemistry , Temperature , Crystallography, X-Ray , Ligands , Models, Molecular , Molecular Structure , Organometallic Compounds/chemical synthesis , Stereoisomerism
13.
J Am Chem Soc ; 129(32): 9941-52, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17658747

ABSTRACT

Janus-type liquid-crystalline fullerodendrimers were synthesized via the 1,3-dipolar cycloaddtition of two mesomorphic dendrons and C60. By assembling poly(aryl ester) dendrons functionalized with cyanobiphenyl groups, displaying lamellar mesomorphism, with poly(benzyl ether) dendrons carrying alkyl chains, which display columnar mesomorphism, we could tailor by design the liquid-crystalline properties of the title compounds as a function of each dendron size. The liquid-crystalline properties were examined by polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Depending on the dendrimer generations, smectic (SmC and/or SmA phases) or columnar (Colr-c2mm or Colr-p2gg phases) mesomorphism was obtained. The supramolecular organization is governed by (1) the adequacy of the cross-sectional area of the dendrons, (2) the microsegregation of the dendrimer, (3) the deformation of the dendritic core, and (4) the dipolar interactions between the cyanobiphenyl groups. Comparison of the mesomorphic properties of two fullerodendrimers with those of model compounds (fullerene-free analogues) indicated that the C60 unit does not influence the type of mesophase that is formed. Molecular properties determined in solution (permanent dipole moment, specific dielectric polarization, molar Kerr constant) confirm that microsegregation persists in solution and strengthen the models proposed for the structure of the mesophases.

14.
Chem Soc Rev ; 36(9): 1495-513, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17660881

ABSTRACT

In recent years, there has been an increasing interest in the field of liquid crystalline dendrimers. Such a fast development is, among other things, driven by the multiple possibilities offered by combining the mesomorphic properties of single mesogenic subunits with the supermolecular and versatile architectures of dendrimers to yield a new class of highly functional materials. The induction and the control of the mesomorphic properties (phase type and stability) in dendrimers can be achieved by a dedicated molecular design which depends on the chemical nature and structure of both the functional groups and the dendritic matrix. In particular, the intrinsic connectivity of the dendrimer such as the multivalency of the focal core and the multiplicity of the branches, both controlling the geometrical rate of growth, or the dendritic generation, plays a crucial role and influences at various stages the subtle relationships between the supermolecular structure and the mesophase structure and stability. In this critical review article, an account of the various types of dendritic systems that form liquid-crystalline mesophases along with a description of the self-organization of representative case-study supermolecules into liquid crystalline mesophases will be discussed. Some basics of thermotropic liquid crystals and dendrimers will be given in the introduction. Then, in the following sections, selected examples including side-chain, main-chain, fullerodendrimers, shape-persistent dendrimers, supramolecular dendromesogens and metallodendrimers, as representative families of LC dendrimers, will be described. In the conclusion some further developments will be highlighted. This review will not cover liquid crystalline hyperbranched and dendronized polymers that might be considered as being somehow less structurally "perfect".

15.
Langmuir ; 23(2): 619-25, 2007 Jan 16.
Article in English | MEDLINE | ID: mdl-17209613

ABSTRACT

Amphiphiles with a dendritic structure are attractive materials as they combine the features of dendrimers with the self-assembling properties and interfacial behavior of amphiphiles. We have designed and synthesized three series of segmented amphiphilic block co-dendrimers (Janus-type) and studied their interfacial properties on the Langmuir trough. Various behaviors are observed with, as a rule, the lowest generation dendrimers behaving more or less like traditional amphiphiles while the larger molecules tend to exhibit more complicated isotherms, with a non-straightforward temperature dependence, one particular molecule seemingly forming supramolecular assemblies spontaneously. The results presented here, obtained on a series of molecules where many parameters have been varied systematically, show the limits that should be kept in mind when designing amphiphilic dendrimers.

16.
Chemistry ; 13(12): 3377-85, 2007.
Article in English | MEDLINE | ID: mdl-17226867

ABSTRACT

The structure of hexacatenar bent-shape molecules has been systematically modified in order to determine the main molecular factors responsible for the appearance of the axially polar columnar mesophase. It was found that the stability of the polar phase is very sensitive to the subtle modifications of the molecular shape: the phase is solely preserved if the modification is made at the terminal parts of the mesogenic core, whilst any other modifications destabilize the phase. It can be concluded that the main factor driving the transition between the phase made of flat supramolecular discs and the axially polar phase made of the cone-like units is the ability to fulfill close packing conditions in order to eliminate voids between neighboring molecular rigid cores.


Subject(s)
Polycyclic Compounds/chemical synthesis , Liquid Crystals/chemistry , Models, Chemical , Temperature , X-Ray Diffraction
17.
Chemistry ; 13(6): 1674-91, 2007.
Article in English | MEDLINE | ID: mdl-17225230

ABSTRACT

The opposite orientation of the ester spacers in the rodlike ligands L 4C12 (benzimidazole-OOC-phenyl) and L 5C12 (benzimidazole-COO-phenyl) drastically changes the electronic structure of the aromatic systems, without affecting their meridional tricoordination to trivalent lanthanides, Ln(III), and their thermotropic liquid crystalline (i.e., mesomorphic) behaviors. However, the rich mesomorphism exhibited by the complexes [Ln(L 4C12)(NO3)3] (Ln=La-Lu) vanishes in [Ln(L 5C12)(NO3)3], despite superimposable molecular structures and comparable photophysical properties. Density functional theory (DFT) and time-dependant DFT calculations performed in the gas phase show that the inversion of the ester spacers has considerable effects on the electronic structure and polarization of the aromatic groups along the strands, which control residual intermolecular interactions responsible for the formation of thermotropic liquid-crystalline phases. As a rule of thumb, an alternation of electron-poor and electron-rich aromatic rings favors intermolecular interactions between the rigid cores and consequently mesomorphism, a situation encountered for L 4C12, L 5C12, [Ln(L 4C12)(NO3)3], but not for [Ln(L 5C12)(NO3)3]. The intercalation of an additional electron-rich diphenol ring on going from [Ln(L 5C12)(NO3)3] to [Ln(L 6C12)(NO3)3] restores mesomorphism despite an unfavorable orientation of the ester spacers, in agreement with our simple predictive model.

19.
Chem Commun (Camb) ; (27): 2922-4, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-17007418

ABSTRACT

Peripheral cyanobiphenyl dendrimers impose a microphase organization compatible with smectic mesomorphism, in which the bulky nine-coordinate lanthanide core is located between the decoupled mesogenic sublayers made up of parallel cyanobiphenyl groups.

20.
Chem Commun (Camb) ; (36): 3755-68, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16969453

ABSTRACT

Due to their high and variable coordination numbers leading to poorly predictable three-dimensional coordination spheres, the trivalent lanthanide metal ions are challenging molecular objects for introduction into thermotropic liquid crystals. Conversely, their predictive electronic, optical and magnetic metal-centred properties make them particularly attractive for being incorporated into switchable macroscopic materials responding to external electric and magnetic stimuli. We briefly describe here some of the important concepts and strategies leading to the recent successful preparation of luminescent thermotropic lanthanide-containing mesophases, for which the generic term lanthanidomesogens is proposed.

SELECTION OF CITATIONS
SEARCH DETAIL
...