Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
J Clin Invest ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012703

ABSTRACT

Neovascular age-related macular degeneration (nAMD) remains a major cause of visual impairment and puts considerable burden on patients and health care systems. L-DOPA-treated Parkinson Disease (PD) patients have been shown to be partially protected from nAMD, but the mechanism remains unknown. Using murine models, combining 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and laser-induced nAMD, standard PD treatment of L-DOPA/DOPA-decarboxylase inhibitor, or specific dopamine receptor inhibitors, we here demonstrate that L-DOPA treatment-induced increase of dopamine mediated dopamine receptor D2 (DRD2) signaling inhibits choroidal neovascularization independently of MPTP-associated nigrostriatal pathway lesion. Analyzing a retrospective cohort of more than two hundred thousand nAMD patients receiving anti-VEGF treatment from the French nationwide insurance database, we show that DRD2-agonist treated (PD) patients have a significantly delayed age of onset for nAMD (81.4 (±7.0) vs 79.4 (±8.1) years old, respectively, p<0.0001) and reduced need for anti-VEGF therapies (-0.6 injections per 100 mg/day daily dose of DRD2 agonists the second year of treatment), similar to the L-DOPA treatment. While providing a mechanistic explanation for an intriguing epidemiological observation, our findings suggest that systemic DRD2 agonists might constitute an adjuvant therapy to delay and reduce the need for anti-VEGF therapy in nAMD patients.

2.
J Neuroinflammation ; 21(1): 22, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233865

ABSTRACT

Age-related macular degeneration (AMD) is invariably associated with the chronic accumulation of activated mononuclear phagocytes in the subretinal space. The mononuclear phagocytes are composed of microglial cells but also of monocyte-derived cells, which promote photoreceptor degeneration and choroidal neovascularization. Infiltrating blood monocytes can originate directly from bone marrow, but also from a splenic reservoir, where bone marrow monocytes develop into angiotensin II receptor (ATR1)+ splenic monocytes. The involvement of splenic monocytes in neurodegenerative diseases such as AMD is not well understood. Using acute inflammatory and well-phenotyped AMD models, we demonstrate that angiotensin II mobilizes ATR1+ splenic monocytes, which we show are defined by a transcriptional signature using single-cell RNA sequencing and differ functionally from bone marrow monocytes. Splenic monocytes participate in the chorio-retinal infiltration and their inhibition by ATR1 antagonist and splenectomy reduces the subretinal mononuclear phagocyte accumulation and pathological choroidal neovascularization formation. In aged AMD-risk ApoE2-expressing mice, a chronic AMD model, ATR1 antagonist and splenectomy also inhibit the chronic retinal inflammation and associated cone degeneration that characterizes these mice. Our observation of elevated levels of plasma angiotensin II in AMD patients, suggests that similar events take place in clinical disease and argue for the therapeutic potential of ATR1 antagonists to inhibit splenic monocytes for the treatment of blinding AMD.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Humans , Mice , Animals , Aged , Monocytes/pathology , Angiotensin II , Macular Degeneration/genetics , Inflammation/genetics
3.
J Clin Invest ; 133(19)2023 10 02.
Article in English | MEDLINE | ID: mdl-37781924

ABSTRACT

Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Dyslipidemias , Humans , Cytokines/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetic Retinopathy/genetics , Dyslipidemias/metabolism , Lipids , Macrophages/metabolism , Perilipin-2/genetics , Perilipin-2/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Retina/metabolism
4.
Article in English | MEDLINE | ID: mdl-37848250

ABSTRACT

Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.

6.
Int J Mol Sci ; 24(14)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37511507

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by impaired episodic memory and two pathological lesions: amyloid plaques and neurofibrillary tangles. In AD, damaged neurons and the accumulation of amyloid ß (Aß) peptides cause a significant release of high amounts of extracellular ATP, which acts as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentrations of ATP, and P2X7 has been shown to be upregulated in the brains of AD patients, contributing to the disease's pathological processes. Further, there are many polymorphisms of the P2X7 gene that impact the risk of developing AD. P2X7 can directly modulate Aß plaques and Tau protein lesions as well as the inflammatory response by regulating NLRP3 inflammasome and the expression of several chemokines. The significant role of microglial P2X7 in AD has been well established, although other cell types may also be important in P2X7-mediated mechanisms. In this review, we will discuss the different P2X7-dependent pathways involved in the development of AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Adenosine Triphosphate/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism
7.
Pharmaceutics ; 15(7)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37514082

ABSTRACT

Systemic drugs can treat various retinal pathologies such as retinal cancers; however, their ocular diffusion may be limited by the blood-retina barrier (BRB). Sonication corresponds to the use of ultrasound (US) to increase the permeability of cell barriers including in the BRB. The objective was to study the efficacy and safety of sonication using microbubble-assisted low-intensity pulsed US in inducing a transient opening of the BRB. The eyes of C57/BL6J mice were sonicated at different acoustic pressures (0.10 to 0.50 MPa). Efficacy analyses consisted of fluorescein angiography (FA) performed at different timepoints and the size of the leaked molecules was assessed using FITC-marked dextrans. Tolerance was assessed by fundus photographs, optical coherence tomography, immunohistochemistry, RT-qPCR, and electroretinograms. Sonication at 0.15 MPa was the most suitable pressure for transient BRB permeabilization without altering the morphology or function of the retina. It did not increase the expression of inflammation or apoptosis markers in the retina, retinal pigment epithelium, or choroid. The dextran assay suggested that drugs up to 150 kDa in size can cross the BRB. Microbubble-assisted sonication at an optimized acoustic pressure of 0.15 MPa provides a non-invasive method to transiently open the BRB, increasing the retinal diffusion of systemic drugs without inducing any noticeable side-effect.

8.
Cell Mol Life Sci ; 80(8): 210, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37460898

ABSTRACT

Dysregulated autophagy is associated with cardiovascular and metabolic diseases, where impaired flow-mediated endothelial cell responses promote cardiovascular risk. The mechanism by which the autophagy machinery regulates endothelial functions is complex. We applied multi-omics approaches and in vitro and in vivo functional assays to decipher the diverse roles of autophagy in endothelial cells. We demonstrate that autophagy regulates VEGF-dependent VEGFR signaling and VEGFR-mediated and flow-mediated eNOS activation. Endothelial ATG5 deficiency in vivo results in selective loss of flow-induced vasodilation in mesenteric arteries and kidneys and increased cerebral and renal vascular resistance in vivo. We found a crucial pathophysiological role for autophagy in endothelial cells in flow-mediated outward arterial remodeling, prevention of neointima formation following wire injury, and recovery after myocardial infarction. Together, these findings unravel a fundamental role of autophagy in endothelial function, linking cell proteostasis to mechanosensing.


Subject(s)
Endothelial Cells , Myocardial Infarction , Humans , Autophagy , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Mesenteric Arteries/metabolism , Myocardial Infarction/metabolism , Nitric Oxide Synthase Type III/metabolism , Signal Transduction , Vasodilation , Animals , Mice
9.
J Neuroinflammation ; 20(1): 28, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36755326

ABSTRACT

Retinal melanosome/melanolipofuscin-containing cells (MCCs), clinically visible as hyperreflective foci (HRF) and a highly predictive imaging biomarker for the progression of age-related macular degeneration (AMD), are widely believed to be migrating retinal pigment epithelial (RPE) cells. Using human donor tissue, we identify the vast majority of MCCs as melanophages, melanosome/melanolipofuscin-laden mononuclear phagocytes (MPs). Using serial block-face scanning electron microscopy, RPE flatmounts, bone marrow transplantation and in vitro experiments, we show how retinal melanophages form by the transfer of melanosomes from the RPE to subretinal MPs when the "don't eat me" signal CD47 is blocked. These melanophages give rise to hyperreflective foci in Cd47-/--mice in vivo, and are associated with RPE dysmorphia similar to intermediate AMD. Finally, we show that Cd47 expression in human RPE declines with age and in AMD, which likely participates in melanophage formation and RPE decline. Boosting CD47 expression in AMD might protect RPE cells and delay AMD progression.


Subject(s)
CD47 Antigen , Macular Degeneration , Humans , Animals , Mice , CD47 Antigen/metabolism , Retinal Pigment Epithelium/metabolism , Macular Degeneration/metabolism , Retina/metabolism , Tomography, Optical Coherence/methods
10.
Neuropharmacology ; 223: 109332, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36372269

ABSTRACT

Adenosine triphosphate (ATP) is a signalling molecule acting as a neurotransmitter but also as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentration of ATP released by damaged cells. In the eye, P2X7 is expressed by resident microglia and immune cells that infiltrate the retina in disease such as age-related macular degeneration (AMD), a degenerative retinal disease, and uveitis, an inflammatory eye disease. Activation of P2X7 is involved in several physiological and pathological processes: phagocytosis, activation of the inflammasome NLRP3, release of pro-inflammatory mediators and cell death. The aim of this review is to discuss the potential involvement of P2X7 in the development of AMD and uveitis.


Subject(s)
Macular Degeneration , Retinal Diseases , Humans , Retinal Diseases/metabolism , Retinal Diseases/pathology , Phagocytosis , Macular Degeneration/metabolism , Retina/metabolism , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X7/metabolism
11.
Int J Mol Sci ; 23(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35054863

ABSTRACT

Hypoxia is potentially one of the essential triggers in the pathogenesis of wet age-related macular degeneration (wetAMD), characterized by choroidal neovascularization (CNV) which is driven by the accumulation of subretinal mononuclear phagocytes (MP) that include monocyte-derived cells. Here we show that systemic hypoxia (10% O2) increased subretinal MP infiltration and inhibited inflammation resolution after laser-induced subretinal injury in vivo. Accordingly, hypoxic (2% O2) human monocytes (Mo) resisted elimination by RPE cells in co-culture. In Mos from hypoxic mice, Thrombospondin 1 mRNA (Thbs1) was most downregulated compared to normoxic animals and hypoxia repressed Thbs-1 expression in human monocytes in vitro. Hypoxic ambient air inhibited MP clearance during the resolution phase of laser-injury in wildtype animals, but had no effect on the exaggerated subretinal MP infiltration observed in normoxic Thbs1-/--mice. Recombinant Thrombospondin 1 protein (TSP-1) completely reversed the pathogenic effect of hypoxia in Thbs1-/--mice, and accelerated inflammation resolution and inhibited CNV in wildtype mice. Together, our results demonstrate that systemic hypoxia disturbs TSP-1-dependent subretinal immune suppression and promotes pathogenic subretinal inflammation and can be therapeutically countered by local recombinant TSP-1.


Subject(s)
Hypoxia/pathology , Inflammation/pathology , Retina/pathology , Thrombospondin 1/metabolism , Animals , Humans , Lasers , Male , Mice, Inbred C57BL , Monocytes/metabolism , Monocytes/pathology , Retinal Pigment Epithelium/pathology
12.
Exp Eye Res ; 213: 108861, 2021 12.
Article in English | MEDLINE | ID: mdl-34822853

ABSTRACT

Aberrant angiogenesis lies at the heart of a wide range of ocular pathologies such as proliferative diabetic retinopathy, wet age-related macular degeneration and retinopathy of prematurity. This study explores the anti-angiogenic activity of a novel small molecule investigative compound capable of inhibiting profilin1-actin interaction recently identified by our group. We demonstrate that our compound is capable of inhibiting migration, proliferation and angiogenic activity of microvascular endothelial cells in vitro as well as choroidal neovascularization (CNV) ex vivo. In mouse model of laser-injury induced CNV, intravitreal administration of this compound diminishes sub-retinal neovascularization. Finally, our preliminary structure-activity relationship study (SAR) demonstrates that this small molecule compound is amenable to improvement in biological activity through structural modifications.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Choroidal Neovascularization/drug therapy , Retinal Neovascularization/drug therapy , Actins/antagonists & inhibitors , Animals , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Choroidal Neovascularization/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Humans , Intravitreal Injections , Mice , Mice, Inbred C57BL , Profilins/antagonists & inhibitors , Retinal Neovascularization/metabolism , Retinal Vessels/cytology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism
13.
Prog Neurobiol ; 206: 102139, 2021 11.
Article in English | MEDLINE | ID: mdl-34391810

ABSTRACT

Alzheimer's disease is the most common form of dementia characterized by intracellular aggregates of hyperphosphorylated Tau protein and extracellular accumulation of amyloid ß (Aß) peptides. We previously demonstrated that the purinergic receptor P2X7 (P2X7) plays a major role in Aß-mediated neurodegeneration but the relationship between P2X7 and Tau remained overlooked. Such a link was supported by cortical upregulation of P2X7 in patients with various type of frontotemporal lobar degeneration, including mutation in the Tau-coding gene, MAPT, as well as in the brain of a Tauopathy mouse model (THY-Tau22). Subsequent phenotype analysis of P2X7-deficient Tau mice revealed the instrumental impact of this purinergic receptor. Indeed, while P2X7-deficiency had a moderate effect on Tau pathology itself, we observed a significant reduction of microglia activation and of Tau-related inflammatory mediators, particularly CCL4. Importantly, P2X7 deletion ultimately rescued synaptic plasticity and memory impairments of Tau mice. Altogether, the present data support a contributory role of P2X7 dysregulation on processes governing Tau-induced brain anomalies. Due to the convergent role of P2X7 blockade in both Aß and Tau background, P2X7 inhibitors might prove to be ideal candidate drugs to curb the devastating cognitive decline in Alzheimer's disease and Tauopathies.


Subject(s)
Alzheimer Disease , Receptors, Purinergic P2X7/deficiency , Tauopathies , Alzheimer Disease/genetics , Amyloid beta-Peptides , Animals , Cognition , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Tauopathies/genetics , tau Proteins/genetics
14.
Glia ; 69(7): 1679-1693, 2021 07.
Article in English | MEDLINE | ID: mdl-33683746

ABSTRACT

Muller glial cells (MGCs) are responsible for the homeostatic and metabolic support of the retina. Despite the importance of MGCs in retinal disorders, reliable and accessible human cell sources to be used to model MGC-associated diseases are lacking. Although primary human MGCs (pMGCs) can be purified from post-mortem retinal tissues, the donor scarcity limits their use. To overcome this problem, we developed a protocol to generate and bank human induced pluripotent stem cell-derived MGCs (hiMGCs). Using a transcriptome analysis, we showed that the three genetically independent hiMGCs generated were homogeneous and showed phenotypic characteristics and transcriptomic profile of pMGCs. These cells expressed key MGC markers, including Vimentin, CLU, DKK3, SOX9, SOX2, S100A16, ITGB1, and CD44 and could be cultured up to passage 8. Under our culture conditions, hiMGCs and pMGCs expressed low transcript levels of RLPB1, AQP4, KCNJ1, KCJN10, and SLC1A3. Using a disease modeling approach, we showed that hiMGCs could be used to model the features of diabetic retinopathy (DR)-associated dyslipidemia. Indeed, palmitate, a major free fatty acid with elevated plasma levels in diabetic patients, induced the expression of inflammatory cytokines found in the ocular fluid of DR patients such as CXCL8 (IL-8) and ANGPTL4. Moreover, the analysis of palmitate-treated hiMGC secretome showed an upregulation of proangiogenic factors strongly related to DR, including ANG2, Endoglin, IL-1ß, CXCL8, MMP-9, PDGF-AA, and VEGF. Thus, hiMGCs could be an alternative to pMGCs and an extremely valuable tool to help to understand and model glial cell involvement in retinal disorders, including DR.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , Induced Pluripotent Stem Cells , Diabetes Mellitus/metabolism , Ependymoglial Cells/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Neuroglia/metabolism , Retina
15.
STAR Protoc ; 2(1): 100281, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33532730

ABSTRACT

The classical aortic ring model is well suited for deciphering pro-angiogenic processes. Here, we propose simple modifications of the standard protocol to study various anti-angiogenic processes from growth arrest to capillary degeneration. Aortic rings are cultured under basal conditions for 6 days to allow physiological vessel sprouting and then split into treatment groups to follow capillary growth or degeneration for an additional 2 days.


Subject(s)
Aorta/metabolism , Capillaries/metabolism , Neovascularization, Physiologic , Animals , Organ Culture Techniques , Rats , Rats, Sprague-Dawley
16.
Int J Mol Sci ; 22(3)2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33503976

ABSTRACT

Müller cells, the major retinal macroglia, are key to maintaining vascular integrity as well as retinal fluid and ion homeostasis. Although platelet derived growth factor (PDGF) receptor expression in Müller glia has been reported earlier, their actual role for Müller cell function and intimate interaction with cells of the retinal neurovascular unit remains unclear. To close this gap of knowledge, Müller cell-specific PDGF receptor alpha (PDGFRα) knockout (KO) mice were generated, characterized, and subjected to a model of choroidal neovascularization (CNV). PDGFRα-deficient Müller cells could not counterbalance hypoosmotic stress as efficiently as their wildtype counterparts. In wildtypes, the PDGFRα ligand PDGF-BB prevented Müller cell swelling induced by the administration of barium ions. This effect could be blocked by the PDGFR family inhibitor AC710. PDGF-BB could not restore the capability of an efficient volume regulation in PDGFRα KO Müller cells. Additionally, PDGFRα KO mice displayed reduced rod and cone-driven light responses. Altogether, these findings suggest that Müller glial PDGFRα is central for retinal functions under physiological conditions. In contrast, Müller cell-specific PDGFRα KO resulted in less vascular leakage and smaller lesion areas in the CNV model. Of note, the effect size was comparable to pharmacological blockade of PDGF signaling alone or in combination with anti-vascular endothelial growth factor (VEGF) therapy-a treatment regimen currently being tested in clinical trials. These data imply that targeting PDGF to treat retinal neovascular diseases may have short-term beneficial effects, but may elicit unwarranted side effects given the putative negative effects on Müller cell homeostatic functions potentially interfering with a long-term positive outcome.


Subject(s)
Ependymoglial Cells/metabolism , Homeostasis , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Signal Transduction , Animals , Biomarkers , Choroidal Neovascularization/etiology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression , Gene Knockout Techniques , Gliosis/etiology , Gliosis/metabolism , Gliosis/pathology , Mice , Mice, Knockout , Neuroglia/metabolism , Organ Specificity/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Retina/metabolism , Retina/pathology
17.
J Neuroinflammation ; 17(1): 358, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243251

ABSTRACT

BACKGROUND: Rhegmatogenous retinal detachment (RD) involving the macula is a major cause of visual impairment despite high surgical success rate, mainly because of cone death. RD causes the infiltration of activated immune cells, but it is not clear whether and how infiltrating inflammatory cells contribute to cone cell loss. METHODS: Vitreous samples from patients with RD and from control patients with macular hole were analyzed to characterize the inflammatory response to RD. A mouse model of RD and retinal explants culture were then used to explore the mechanisms leading to cone death. RESULTS: Analysis of vitreous samples confirms that RD induces a marked inflammatory response with increased cytokine and chemokine expression in humans, which is closely mimicked by experimental murine RD. In this model, we corroborate that myeloid cells and T-lymphocytes contribute to cone loss, as the inhibition of their accumulation by Thrombospondin 1 (TSP1) increased cone survival. Using monocyte/retinal co-cultures and TSP1 treatment in RD, we demonstrate that immune cell infiltration downregulates rod-derived cone viability factor (RdCVF), which physiologically regulates glucose uptake in cones. Insulin and the insulin sensitizers rosiglitazone and metformin prevent in part the RD-induced cone loss in vivo, despite the persistence of inflammation CONCLUSION: Our results describe a new mechanism by which inflammation induces cone death in RD, likely through cone starvation due to the downregulation of RdCVF that could be reversed by insulin. Therapeutic inhibition of inflammation and stimulation of glucose availability in cones by insulin signaling might prevent RD-associated cone death until the RD can be surgically repaired and improve visual outcome after RD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03318588.


Subject(s)
Insulin/pharmacology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Detachment/metabolism , Retinal Detachment/pathology , Adult , Animals , Cell Death/physiology , Eye Proteins/metabolism , Female , Glucose/metabolism , Humans , Hypoglycemic Agents/pharmacology , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Male , Metformin/pharmacology , Mice , Mice, Inbred C57BL , Middle Aged , Retinal Cone Photoreceptor Cells/drug effects , Retinal Detachment/immunology , Rosiglitazone/pharmacology , Thioredoxins/metabolism
18.
Med Sci (Paris) ; 36(10): 886-892, 2020 Oct.
Article in French | MEDLINE | ID: mdl-33026331

ABSTRACT

Age-related macular degeneration (AMD) is a complex, highly heritable, multifactorial disease caused by the interplay of age and genetic and environmental risk factors. No treatment has yet been found to treat the slowly progressing atrophic form of AMD. All forms of AMD are invariably associated with an accumulation of mononuclear phagocytes (MP) in the subretinal space, a family of cells that include inflammatory and resident macrophages. We here present an overview of the inflammatory process occurring in AMD and discuss the origin of MPs and the consequences of their accumulation in the subretinal space. Finally, we will review the role played by the established risk factors for AMD to promote the switch from beneficial inflammation in early stage to a deleterious inflammation in the advanced stage of the disease.


TITLE: Sur les origines inflammatoires de la DMLA. ABSTRACT: La dégénérescence maculaire liée à l'âge (DMLA) est une maladie multifactorielle hautement héréditaire qui survient chez le sujet âgé et est causée par une combinaison de facteurs de risques génétiques et environnementaux. Les formes atrophiques de la maladie constituent aujourd'hui une impasse thérapeutique. La physiopathologie de la DMLA est invariablement associée à une accumulation dans l'espace sous-rétinien, de phagocytes mononucléés (PM), une famille de cellules qui inclue des macrophages résidents et inflammatoires. Nous aborderons dans cette revue l'ensemble des mécanismes de cette inflammation spécifique, de l'origine des PM aux conséquences de leur accumulation dans l'espace sous-rétinien. Finalement, nous discuterons de l'impact des facteurs de risques génétiques et environnementaux établis de la DMLA sur le passage d'une inflammation bénéfique aux stades précoces de la maladie à une inflammation délétère aux stades avancés.


Subject(s)
Inflammation/complications , Macular Degeneration/etiology , Eye/immunology , Eye/metabolism , Eye/pathology , Humans , Immune Privilege/physiology , Inflammation/metabolism , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Macular Degeneration/epidemiology , Macular Degeneration/immunology , Macular Degeneration/metabolism , Risk Factors
19.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814029

ABSTRACT

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Subject(s)
CD47 Antigen/metabolism , Chromosomes, Human, Pair 10/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Macular Degeneration/genetics , Osteopontin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites/physiology , COS Cells , Cell Line , Chlorocebus aethiops , Eye/pathology , Genetic Predisposition to Disease/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Signal Transduction/genetics
20.
J Biol Chem ; 295(28): 9618-9629, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32444495

ABSTRACT

Angiogenesis-mediated neovascularization in the eye is usually associated with visual complications. Pathological angiogenesis is particularly prominent in the retina in the settings of proliferative diabetic retinopathy, in which it can lead to permanent loss of vision. In this study, by bioinformatics analyses, we provide evidence for elevated expression of actin-binding protein PFN1 (profilin1) in the retinal vascular endothelial cells (VECs) of individuals with proliferative diabetic retinopathy, findings further supported by gene expression analyses for PFN1 in experimentally induced abnormal retinal neovascularization in an oxygen-induced retinopathy murine model. We observed that in a conditional knockout mouse model, postnatal deletion of the Pfn1 gene in VECs leads to defects in tip cell activity (marked by impaired filopodial protrusions) and reduced vascular sprouting, resulting in hypovascularization during developmental angiogenesis in the retina. Consistent with these findings, an investigative small molecule compound targeting the PFN1-actin interaction reduced random motility, proliferation, and cord morphogenesis of retinal VECs in vitro and experimentally induced abnormal retinal neovascularization in vivo In summary, these findings provide the first direct in vivo evidence that PFN1 is required for formation of actin-based protrusive structures and developmental angiogenesis in the retina. The proof of concept of susceptibility of abnormal angiogenesis to small molecule intervention of PFN1-actin interaction reported here lays a conceptual foundation for targeting PFN1 as a possible strategy in angiogenesis-dependent retinal diseases.


Subject(s)
Cell Movement , Cell Proliferation , Endothelial Cells/metabolism , Profilins/metabolism , Retinal Neovascularization/metabolism , Animals , Cell Line , Disease Models, Animal , Endothelial Cells/pathology , Humans , Mice , Mice, Knockout , Oxygen/metabolism , Profilins/genetics , Retinal Neovascularization/genetics , Retinal Neovascularization/pathology , Retinal Neovascularization/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...