Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 7(8): e41922, 2012.
Article in English | MEDLINE | ID: mdl-22870263

ABSTRACT

To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T(9)TKE(12) sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from K(d) = 25±6 nM to K(d) = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (K(d) = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the ν(as)(P-O) and ν(s)(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in ν(as)(UO(2))(2+) vibration (from 923 cm(-1) to 908 cm(-1)) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis/chemistry , Calmodulin/chemistry , Protein Engineering , Uranium/chemistry , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Casein Kinase II/chemistry , Casein Kinase II/genetics , Casein Kinase II/metabolism , Hydrogen-Ion Concentration , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Uranium/metabolism , Uranium/toxicity
2.
Nat Chem Biol ; 4(6): 366-72, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18454142

ABSTRACT

Aberrant interactions of copper and zinc ions with the amyloid-beta peptide (Abeta) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Abeta and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Abeta are associated with copper binding. Metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD. This protein protects, by an unknown mechanism, cultured neurons from the toxicity of Abeta. Here, we show that a metal swap between Zn(7)MT-3 and soluble and aggregated Abeta(1-40)-Cu(II) abolishes the ROS production and the related cellular toxicity. In this process, copper is reduced by the protein thiolates forming Cu(I)(4)Zn(4)MT-3, in which an air-stable Cu(I)(4)-thiolate cluster and two disulfide bonds are present. The discovered protective effect of Zn(7)MT-3 from the copper-mediated Abeta(1-40) toxicity may lead to new therapeutic strategies for treating AD.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/toxicity , Copper/toxicity , Metallothionein/pharmacology , Organometallic Compounds/antagonists & inhibitors , Organometallic Compounds/toxicity , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/toxicity , Amyloid beta-Peptides/chemistry , Cell Survival/drug effects , Circular Dichroism , Copper/chemistry , Humans , Metallothionein/chemistry , Neurons/cytology , Neurons/drug effects , Organometallic Compounds/chemistry , Peptide Fragments/chemistry , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Solubility , Tumor Cells, Cultured , Zinc/chemistry
3.
Chembiochem ; 8(11): 1317-25, 2007 Jul 23.
Article in English | MEDLINE | ID: mdl-17577900

ABSTRACT

Aggregation of the beta-amyloid peptide (Abeta) to amyloid plaques is a key event in Alzheimer's disease. According to the amyloid-cascade hypothesis, Abeta aggregates are toxic to neurons through the production of reactive oxygen species (ROS). Copper ions play an important role, because they are able to bind to Abeta and influence its aggregation properties. Moreover, Cu-Abeta is supposed to be directly involved in ROS production. To get a better understanding of these reactions, we measured the production of HO(.) and the redox potential of Cu-Abeta. The results were compared to other biological copper-peptide complexes in order to get an insight into the biological relevance. Cu-Abeta produced more HO(.) than the complex of copper with Asp-Ala-His-Lys (Cu-DAHK), but less than with Gly-His-Lys (Cu-GHK). Cyclic voltammetry revealed that the order for reduction potential is Cu-GHK>Cu-Abeta>Cu-DAHK, but for the oxidation potential the order is reversed. Thus, easier copper redox cycling correlated to higher HO(.) production. The copper complex of the form Abeta1-42 showed a HO(.) production five-times higher than that of the form Abeta1-40. Time-dependence and aggregation studies suggest that an aggregation intermediate is responsible for this increased HO(.) production.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Ascorbic Acid/chemistry , Copper/chemistry , Copper/metabolism , Hydroxyl Radical/chemistry , Hydroxyl Radical/metabolism , Ascorbic Acid/metabolism , Electron Spin Resonance Spectroscopy , Molecular Structure , Oxidation-Reduction
5.
J Biol Inorg Chem ; 11(8): 1024-38, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16924555

ABSTRACT

The aggregation of the peptide amyloid-beta (Abeta) to form amyloid plaques is a key event in Alzheimer's disease. It has been shown that CuII can bind to soluble Abeta and influence its aggregation properties. Three histidines and the N-terminal amine have been proposed to be involved in its coordination. Here, for the first time, we show isothermal titration calorimetry (ITC) measurements of the CuII binding to Abeta16 and Abeta28, models of the soluble Abeta. Moreover, different spectroscopic methods were applied. The studies revealed new insights into these CuII-Abeta complexes: (1) ITC showed two CuII binding sites, with an apparent Kd of 10(-7) and 10(-5) M, respectively; (2) the high-affinity site has a smaller enthalpic contribution but a larger entropic contribution than the low-affinity binding site; (3) azide did not bind to CuII in the higher-affinity binding site, suggesting the absence of a weak, labile ligand; (4) azide could bind to the CuII in the low-affinity binding site in Abeta28 but not in Abeta16; (5) 1H-NMR suggests that the carboxylate of aspartic acid in position 1 is involved in the ligation to CuII in the high-affinity binding site; (6) the pKa of 11.3 of tyrosine in position 10 was not influenced by the binding of 2 equivalents of CuII.


Subject(s)
Alzheimer Disease/etiology , Amyloid beta-Peptides/chemistry , Copper/chemistry , Peptide Fragments/chemistry , Aspartic Acid , Binding Sites , Humans , Protein Binding , Spectrum Analysis , Thermodynamics , Tyrosine
6.
Chembiochem ; 6(9): 1663-71, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16078307

ABSTRACT

Aggregation of the human peptide amyloid-beta (Abeta) is a key event in Alzheimer's disease (AD). Zinc ions play an important role in AD and in Abeta aggregation. In vitro, Zn(II) binds to Abeta and accelerates its aggregation. In this work we have investigated Zn(II) binding to the synthetic peptide Abeta1-16, which contains the metal-binding domain of Abeta. Cd(II) was used to probe the Zn(II) site. Abeta1-16 bound one equivalent of Zn(II) with an apparent dissociation constant (Kd) of 10(-4) M. This Kd value is in the same range as the Zn concentration needed to precipitate Abeta. Circular dichroism and NMR indicated predominantly random-coil secondary structures of apo-Abeta1-16, Zn(II)-Abeta1-16 and Cd(II)-Abeta1-16, which were all highly dynamic and flexible. The three histidines at positions 6, 13 and 14 were suggested to be ligands to Zn(II) and Cd(II). Evidence that the aspartate at position 1 served as a fourth ligand to Zn(II) and Cd(II) was found at pH 8.7. 111Cd(II) NMR showed a resonance at 84 ppm, in line with a mixed oxygen-/nitrogen-ligand environment. The tyrosine at position 10 could be excluded as a ligand.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Zinc/metabolism , Amyloid beta-Peptides/chemical synthesis , Amyloid beta-Peptides/chemistry , Cadmium/metabolism , Chromatography, Gel , Circular Dichroism , Humans , Hydrogen-Ion Concentration , Nuclear Magnetic Resonance, Biomolecular , Peptide Fragments/chemical synthesis , Peptide Fragments/chemistry , Tyrosine
SELECTION OF CITATIONS
SEARCH DETAIL
...