Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Psychiatry ; 14: 1129030, 2023.
Article in English | MEDLINE | ID: mdl-37304443

ABSTRACT

Introduction: The hippocampus and striatum have dissociable roles in memory and are necessary for spatial and procedural/cued learning, respectively. Emotionally charged, stressful events promote the use of striatal- over hippocampus-dependent learning through the activation of the amygdala. An emerging hypothesis suggests that chronic consumption of addictive drugs similarly disrupt spatial/declarative memory while facilitating striatum-dependent associative learning. This cognitive imbalance could contribute to maintain addictive behaviors and increase the risk of relapse. Methods: We first examined, in C57BL/6 J male mice, whether chronic alcohol consumption (CAC) and alcohol withdrawal (AW) might modulate the respective use of spatial vs. single cue-based learning strategies, using a competition protocol in the Barnes maze task. We then performed in vivo electrophysiological studies in freely moving mice to assess learning-induced synaptic plasticity in both the basolateral amygdala (BLA) to dorsal hippocampus (dCA1) and BLA to dorsolateral striatum (DLS) pathways. Results: We found that both CAC and early AW promote the use of cue-dependent learning strategies, and potentiate plasticity in the BLA → DLS pathway while reducing the use of spatial memory and depressing BLA → dCA1 neurotransmission. Discussion: These results support the view that CAC disrupt normal hippocampo-striatal interactions, and suggest that targeting this cognitive imbalance through spatial/declarative task training could be of great help to maintain protracted abstinence in alcoholic patients.

2.
J Vis Exp ; (175)2021 09 25.
Article in English | MEDLINE | ID: mdl-34633376

ABSTRACT

Laboratory animals are subjected to multiple manipulations by scientists or animal care providers. The stress this causes can have profound effects on animal well-being and can also be a confounding factor for experimental variables such as anxiety measures. Over the years, handling techniques that minimize handling-related stress have been developed with a particular focus on rats, and little attention to mice. However, it has been shown that mice can be habituated to manipulations using handling techniques. Habituating mice to handling reduces stress, facilitates routine handling, improves animal wellbeing, decreases data variability, and improves experimental reliability. Despite beneficial effects of handling, the tail-pick up approach, which is particularly stressful, is still widely used. This paper provides a detailed description and demonstration of a newly developed mouse-handling technique intended to minimize the stress experienced by the animal during human interaction. This manual technique is performed over 3 days (3D-handling technique) and focuses on the animal's capacity to habituate to the experimenter. This study also shows the effect of previously established tunnel handling techniques (using a polycarbonate tunnel) and the tail-pick up technique. Specifically studied are their effects on anxiety-like behaviors, using behavioral tests (Elevated-Plus Maze and Novelty Suppressed Feeding), voluntary interaction with experimenters and physiological measurement (corticosterone levels). The 3D-handling technique and the tunnel handling technique reduced anxiety-like phenotypes. In the first experiment, using 6-month-old male mice, the 3D-handling technique significantly improved experimenter interaction. In the second experiment, using 2.5-month-old female, it reduced corticosterone levels. As such, the 3D-handling is a useful approach in scenarios where interaction with the experimenter is required or preferred, or where tunnel handling may not be possible during the experiment.


Subject(s)
Animal Husbandry , Animals, Laboratory , Animals , Anxiety/etiology , Anxiety/prevention & control , Corticosterone , Female , Male , Mice , Rats , Reproducibility of Results
3.
Neurobiol Learn Mem ; 179: 107406, 2021 03.
Article in English | MEDLINE | ID: mdl-33609736

ABSTRACT

The G9a/G9a-like protein (GLP) histone lysine dimethyltransferase complex and downstream histone H3 lysine 9 dimethylation (H3K9me2) repressive mark have recently emerged as key transcriptional regulators of gene expression programs necessary for long-term memory (LTM) formation in the dorsal hippocampus. However, the role for hippocampal G9a/GLP complex in mediating the consolidation of spatial LTM remains largely unknown. Using a water maze competition task in which both dorsal hippocampus-dependent spatial and striatum-dependent cue navigation strategies are effective to solve the maze, we found that pharmacological inhibition of G9a/GLP activity immediately after learning disrupts long-term consolidation of previously learned spatial information in male mice, hence producing cue bias on the competition test performed 24 h later. Importantly, the inhibition of hippocampal G9a/GLP did not disrupt short-term memory retention. Immunohistochemical analyses revealed increases in global levels of permissive histone H3K9 acetylation in the dorsal hippocampus and dorsal striatum at 1 h post-training, which persisted up to 24 h in the hippocampus. Conversely, H3K9me2 levels were either unchanged in the dorsal hippocampus or transiently decreased at 15 min post-training in the dorsal striatum. Finally, the inhibition of G9a/GLP activity further increased global levels of H3K9 acetylation while decreasing H3K9me2 in the hippocampus at 1 h post-training. However, both marks returned to vehicle control levels at 24 h. Together, these findings support the possibility that G9a/GLP in the dorsal hippocampus is required for the transcriptional switch from short-term to long-term spatial memory formation.


Subject(s)
Corpus Striatum/metabolism , Hippocampus/metabolism , Histone-Lysine N-Methyltransferase/physiology , Memory Consolidation/physiology , Memory, Long-Term/physiology , Memory, Short-Term/physiology , Spatial Memory/physiology , Animals , Azepines/pharmacology , Corpus Striatum/drug effects , Hippocampus/drug effects , Histone Code , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Male , Memory Consolidation/drug effects , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Mice , Morris Water Maze Test , Quinazolines/pharmacology , Spatial Memory/drug effects
4.
J Huntingtons Dis ; 9(1): 33-45, 2020.
Article in English | MEDLINE | ID: mdl-31868674

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of the trinucleotide CAG in the HD gene. While the presence of nuclear aggregates of mutant huntingtin (mHtt) in neurons is a hallmark of HD, the reason behind its toxicity remains elusive. OBJECTIVE: The present study was conducted to assess a correlation between the number of mHtt aggregates and the severity of HD symptoms in R6/1 mice. METHODS: We investigated correlations between behavioral deficits and the level of nuclear mHtt aggregates in different neuroanatomical regions in 3-month-old R6/1 mice, the age at which a large variability of symptom severity between animals has been observed. RESULTS: R6/1 mice were deficient in instinctive and anxiety related behaviors as well as long-term memory capabilities. Significant differences were also found between the sexes; female transgenic mice displayed less severe deficits than males. While the level of mHtt aggregates was correlated with the severity of HD phenotypes in most regions of interest, an opposite relationship also was found for some other regions examined. CONCLUSIONS: The obtained results suggest harmful and region-specific roles of mHtt aggregates in HD symptoms.


Subject(s)
Behavior, Animal/physiology , Gray Matter/metabolism , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/physiopathology , Mutant Proteins/metabolism , Protein Aggregates , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Severity of Illness Index
5.
Neurobiol Stress ; 10: 100161, 2019 Feb.
Article in English | MEDLINE | ID: mdl-31309134

ABSTRACT

Exposure to prolonged, unpredictable stress leads to glucocorticoids-mediated long-lasting neuroendocrine abnormalities associated with emotional and cognitive impairments. Excessive levels of serum glucocorticoids (cortisol in humans, corticosterone in rodents) contribute notably to deficits in working memory (WM), a task which heavily relies on functional interactions between the medial prefrontal cortex (PFC) and the dorsal hippocampus (dHPC). However, it is unknown whether stress-induced increases in plasma corticosterone mirror corticosterone levels in specific brain regions critical for WM. After a 6 week-UCMS exposure, C57BL/6 J male mice exhibited increased anxiety- and depressive-like behaviors when measured one week later and displayed WM impairments timely associated with increased plasma corticosterone response. In chronically stressed mice, basal phosphorylated/activated CREB (pCREB) was markedly increased in the PFC and the CA1 area of the dHPC and WM testing did not elicit any further increase in pCREB in the two regions. Using microdialysis samples from freely-moving mice, we found that WM testing co-occurred with a rapid and sustained increase in corticosterone response in the PFC while there was a late, non-significant rise of corticosterone in the dHPC. The results also show that non-stressed mice injected with corticosterone (2 mg/kg i.p.) before WM testing displayed behavioral and molecular alterations similar to those observed in stressed animals while a pre-WM testing metyrapone injection (35 mg/kg i.p.), a corticosterone synthesis inhibitor, prevented the effects of UCMS exposure. Overall, the abnormal regional increase of corticosterone concentrations mainly in the PFC emerges as a key factor of enduring WM dysfunctions in UCMS-treated animals.

6.
Article in English | MEDLINE | ID: mdl-29409919

ABSTRACT

This study investigated whether sst2 gene deletion interacts with age and chronic stress exposure to produce exacerbated emotional and cognitive ageing. Middle-aged (10-12 month) sst2 knockout (sst2KO) and wild-type (WT) mice underwent an unpredictable chronic mild stress (UCMS) procedure for 6 weeks or no stress for control groups. This was followed by a battery of tests to assess emotional and cognitive functions and neuroendocrine status (CORT level). A re-evaluation was performed 6 months later (i.e. with 18-month-old mice). UCMS reproduced neuroendocrine and behavioral features of stress-related disorders such as elevated circulating CORT levels, physical deteriorations, increased anxiety- and depressive-like behaviors and working memory impairments. sst2KO mice displayed behavioral alterations which were similar to stressed WT and exhibited exacerbated changes following UCMS exposure. The evaluations performed in the older mice showed significant long-term effects of UCMS exposure. Old sst2KO mice previously exposed to UCMS exhibited spatial learning and memory accuracy impairments and high levels of anxiety-like behaviors which drastically added to the effects of normal ageing. Spatial abilities and emotionality scores (mean z-scores) measured both at the UCMS outcome and 6 months later were correlated with the initially measured CORT levels in middle-age. The present findings indicate that the deletion of the sst2 receptor gene produces chronic hypercorticosteronemia and exacerbates sensitivity to stressors which over time, have consequences on ageing brain function processes.


Subject(s)
Aging/metabolism , Aging/psychology , Cognition/physiology , Emotions/physiology , Receptors, Somatostatin/deficiency , Stress, Psychological/metabolism , Animals , Anxiety/metabolism , Chronic Disease , Cognitive Dysfunction/metabolism , Corticosterone/blood , Depression/metabolism , Disease Models, Animal , Gene Deletion , Memory Disorders/metabolism , Memory, Short-Term/physiology , Mice, Inbred C57BL , Mice, Knockout , Receptors, Somatostatin/genetics
7.
Front Psychiatry ; 8: 87, 2017.
Article in English | MEDLINE | ID: mdl-28611691

ABSTRACT

Different parallel neural circuits interact and may even compete to process and store information: whereas stimulus-response (S-R) learning critically depends on the dorsal striatum (DS), spatial memory relies on the hippocampus (HPC). Strikingly, despite its potential importance for our understanding of addictive behaviors, the impact of drug rewards on memory systems dynamics has not been extensively studied. Here, we assessed long-term effects of drug- vs food reinforcement on the subsequent use of S-R vs spatial learning strategies and their neural substrates. Mice were trained in a Y-maze cue-guided task, during which either food or morphine injections into the ventral tegmental area (VTA) were used as rewards. Although drug- and food-reinforced mice learned the Y-maze task equally well, drug-reinforced mice exhibited a preferential use of an S-R learning strategy when tested in a water-maze competition task designed to dissociate cue-based and spatial learning. This cognitive bias was associated with a persistent increase in the phosphorylated form of cAMP response element-binding protein phosphorylation (pCREB) within the DS, and a decrease of pCREB expression in the HPC. Pharmacological inhibition of striatal PKA pathway in drug-rewarded mice limited the morphine-induced increase in levels of pCREB in DS and restored a balanced use of spatial vs cue-based learning. Our findings suggest that drug (opiate) reward biases the engagement of separate memory systems toward a predominant use of the cue-dependent system via an increase in learning-related striatal pCREB activity. Persistent functional imbalance between striatal and hippocampal activity could contribute to the persistence of addictive behaviors, or counteract the efficiency of pharmacological or psychotherapeutic treatments.

8.
Neuropsychopharmacology ; 42(8): 1647-1656, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27986975

ABSTRACT

Altered brain somatostatin functions recently appeared as key elements for the pathogenesis of stress-related neuropsychiatric disorders. The hippocampus exerts an inhibitory feedback on stress but the mechanisms involved remain unclear. We investigated herein the role of hippocampal somatostatin receptor subtypes in both stress response and behavioral emotionality using C57BL/6, wild type and sst2 or sst4 knockout mice. Inhibitory effects of hippocampal infusions of somatostatin agonists on stress-induced hypothalamo-pituitary-adrenal axis (HPA) activity were tested by monitoring peripheral blood and local hippocampus corticosterone levels, the latter by using microdialysis. Anxiolytic and antidepressant-like effects were determined in the elevated-plus maze, open field, forced swimming, and stress-sensitive beam walking tests. Hippocampal injections of somatostatin analogs and sst2 or sst4, but not sst1 or sst3 receptor agonists produced rapid and sustained inhibition of HPA axis. sst2 agonists selectively produced anxiolytic-like behaviors whereas both sst2 and sst4 agonists had antidepressant-like effects. Consistent with these findings, high corticosterone levels and anxiety were found in sst2KO mice and depressive-like behaviors observed in both sst2KO and sst4KO strains. Both hippocampal sst2 and sst4 receptors selectively inhibit stress-induced HPA axis activation but mediate anxiolytic and antidepressive effects through distinct mechanisms. Such results are to be accounted for in development of pathway-specific somatostatin receptor agents in the treatment of hypercortisolism (Cushing's disease) and stress-related neuropsychiatric disorders.


Subject(s)
Emotions/physiology , Hippocampus/metabolism , Receptors, Somatostatin/physiology , Stress, Psychological/physiopathology , Animals , Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Corticosterone/blood , Corticosterone/metabolism , Hypothalamo-Hypophyseal System/drug effects , Male , Mice , Mice, Knockout , Octreotide/pharmacology , Pituitary-Adrenal System/drug effects , Receptors, Somatostatin/agonists , Receptors, Somatostatin/genetics , Somatostatin/analogs & derivatives , Somatostatin/pharmacology
9.
J Neurosci ; 33(5): 1954-63, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23365234

ABSTRACT

Chromatin modifications, especially histone acetylation, are critically involved in gene regulation required for long-term memory processes. Increasing histone acetylation via administration of histone deacetylase inhibitors before or after a learning experience enhances memory consolidation for hippocampus-dependent tasks and rescues age-related memory impairments. Whether acutely and locally enhancing histone acetylation during early consolidation processes can operate as a switch between multiple memory systems is less clear. This study examined the short- and long-term behavioral consequences of acute intra-CA1 administration of the histone deacetylase inhibitor Trichostatin A (TSA) on cue versus place learning strategy selection after a cue-guided water maze task and competition testing performed 1 or 24 h later in mice. Here, we show that intra-CA1 TSA infusion administrated immediately post-training biased young mice away from striatum-dependent cue strategy toward hippocampus-dependent place strategy under training condition that normally promotes cue strategy in vehicle controls. However, concomitant infusions of TSA with either PKA inhibitor, Rp-cAMPS, into CA1 or cAMP analog, 8Br-cAMP, into dorsal striatum failed to bias young mice to place strategy use. Behavioral and immunohistochemical analyses further indicated that post-training TSA infusion in aged mice rescued aging-associated deregulation of H4 acetylation in the CA1 but failed to reverse phosphorylated CREB deficits and to produce strategy bias on the 24 h probe test. These findings suggest that post-training intra-CA1 TSA infusion promotes dynamic shift from striatum toward the hippocampal system in young but not aged animals, and support the possibility of a role for CREB in the TSA-mediated switch between these two memory systems.


Subject(s)
Hippocampus/drug effects , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Maze Learning/drug effects , Memory/drug effects , Age Factors , Animals , Behavior, Animal/drug effects , Cues , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Hippocampus/metabolism , Mice , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Thionucleotides/pharmacology
10.
J Neurosci ; 31(46): 16517-28, 2011 Nov 16.
Article in English | MEDLINE | ID: mdl-22090478

ABSTRACT

The multiple memory systems hypothesis posits that different neural circuits function in parallel and may compete for information processing and storage. For example, instrumental conditioning would depend on the striatum, whereas spatial memory may be mediated by a circuit centered on the hippocampus. However, the nature of the task itself is not sufficient to select durably one system over the other. In this study, we investigated the effects of natural and pharmacological rewards on the selection of a particular memory system during learning. We compared the effects of food- or drug-induced activation of the reward system on cue-guided versus spatial learning using a Y-maze discrimination task. Drug-induced reward severely impaired the acquisition of a spatial discrimination task but spared the cued version of the task. Immunohistochemical analysis of the phosphorylated form of the cAMP response element binding (CREB) protein and c-Fos expression induced by behavioral testing revealed that the spatial deficit was associated with a decrease of both markers within the hippocampus and the prefrontal cortex. In contrast, drug reward potentiated the cued learning-induced CREB phosphorylation within the dorsal striatum. Administration of the protein kinase A inhibitor 8-Bromo-adenosine-3',5'-cyclic monophosphorothioate Rp isomer (Rp-cAMPS) into the dorsal striatum before training completely reversed the drug-induced spatial deficit and restored CREB phosphorylation levels within the hippocampus and the prefrontal cortex. Therefore, drug-induced striatal hyperactivity may underlie the declarative memory deficit reported here. This mechanism could represent an important early step toward the development of addictive behaviors by promoting conditioning to the detriment of more flexible forms of memory.


Subject(s)
CREB-Binding Protein/metabolism , Corpus Striatum/metabolism , Cues , Cyclic AMP-Dependent Protein Kinases/metabolism , Reward , Signal Transduction/physiology , Space Perception/physiology , Analysis of Variance , Animals , Behavior, Animal , Brain Mapping , Choice Behavior/drug effects , Corpus Striatum/drug effects , Cyclic AMP/analogs & derivatives , Cyclic AMP/pharmacology , Discrimination, Psychological/drug effects , Gene Expression Regulation/drug effects , Hippocampus/metabolism , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Microinjections/methods , Morphine/administration & dosage , Narcotics/administration & dosage , Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-fos/metabolism , Reaction Time/drug effects , Signal Transduction/drug effects , Space Perception/drug effects , Thionucleotides/pharmacology , Ventral Tegmental Area/drug effects
11.
Behav Brain Res ; 207(1): 138-43, 2010 Feb 11.
Article in English | MEDLINE | ID: mdl-19800924

ABSTRACT

The aim of this study was to determine if the memory of the association between a step-down response and a foot-shock can be dissociated from the memory of the context in which the shocking experience occurred. To test this, two versions of the step-down inhibitory avoidance task were used: a standard version, in which animals were given one trial with a weak exposure to the context and a new version, in which animals were given a stronger exposure to the context. A retention test was performed with the platform placed either in the same conditioning chamber as during the acquisition phase or in a new context. Our results demonstrate that the step-down inhibitory avoidance can actually be solved without a functional hippocampus. Specifically, the results show that hippocampus-lesioned mice and sham controls can express similar level of memory performance but use two different strategies which were distinguished by assessing retention in a new context. Hippocampus-lesioned mice and mice injected with forskolin (adenylyl cyclase activator) 3h after acquisition use a memory strategy which is independent of the context of acquisition. In addition, our results confirm that the cAMP signaling pathway is a key step in memory consolidation processing.


Subject(s)
Avoidance Learning/physiology , Hippocampus/physiology , Memory/physiology , Animals , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Colforsin/pharmacology , Electroshock , Hippocampus/drug effects , Ibotenic Acid/toxicity , Male , Memory/drug effects , Mice , Reaction Time/drug effects , Reaction Time/physiology
12.
Hippocampus ; 20(6): 745-57, 2010 Jun.
Article in English | MEDLINE | ID: mdl-19623609

ABSTRACT

The hippocampal somatostatin (sst) receptor subtype 4 (sst(4)) modulates memory formation by diminishing hippocampus-based spatial function while enhancing striatum-dependent behaviors. sst(4)-mediated regulations on neuronal activity in the hippocampus appear to depend on both competitive and cooperative interactions with sst receptor subtype 2 (sst(2)). Here, we investigated whether interactions with sst(2) receptors are required for sst(4)-mediated effects on hippocampus-dependent spatial memory and striatum-dependent cued memory in a water maze paradigm. Competition was assessed in mice by intrahippocampal injections of the sst(4) agonist L-803,087 alone or combined with sst(2) agonists (L-779,976 or octreotide). Effects of L-803,087 were also tested in sst(2) knockout mice to assess for receptor cooperation. Finally, sst(2a) and sst(4) localizations within hippocampal subregions were analyzed by immunohistochemistry and expression levels of sst(2a) and sst(2b) were quantified by real-time qPCR. Hippocampal injections of L-803,087 impaired spatial memory but enhanced cued memory. The latter effect was lost not only in sst(2) knockout mice but also in the presence of sst(2) agonists, whereas the former effect remained unaffected by sst(2) agonists or gene deletion. Octreotide and L-779,976 did not yield memory effects but reduced swim velocity throughout the acquisition trials suggesting that stimulation of sst(2) affected motivation and/or anxiety. sst(2a) and sst(4) were respectively detected in the dentate gyrus (DG) and the CA1 subfield suggesting that their functional interactions are not mediated by direct receptor coupling. Hippocampus sst(2a) expression was 36-fold higher than sst(2b). Possible neural mechanisms and functional significances for interaction between memory systems in relationship with stress-induced changes in hippocampal functions are discussed.


Subject(s)
Hippocampus/metabolism , Memory/physiology , Receptors, Somatostatin/metabolism , Amides/pharmacology , Animals , Hippocampus/drug effects , Immunohistochemistry , Indoles/pharmacology , Maze Learning/drug effects , Maze Learning/physiology , Memory/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
13.
Prog Neurobiol ; 89(2): 153-61, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19595735

ABSTRACT

In mammalian brain, the somatostatin (SRIF: somatotropin release-inhibiting factor) family is composed of two peptides: SRIF and cortistatin (CST), which interact with five different receptor subtypes, sst(1-5). This review summarizes the properties of these receptors, the involvement of somatostatinergic systems in Alzheimer's disease (SRIF/acetylcholine (Ach), SRIF/amyloid beta peptides, and SRIF/tau interactions) and their role in cognition from early studies using cysteamine as an SRIF depleting substance to the use of subtype selective analogues and knockout mice, and modulation of synaptic plasticity. The current SRIF story illustrates how cognition and emotion are intimately integrated in brain function.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cognition/physiology , Somatostatin/metabolism , Alzheimer Disease/pathology , Animals , Central Nervous System/metabolism , Humans , Neuropeptides/metabolism
14.
Psychopharmacology (Berl) ; 202(1-3): 153-63, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18521573

ABSTRACT

RATIONALE: Somatostatin (SS14) has been implicated in various cognitive disorders, and converging evidence from animal studies suggests that SS14 neurons differentially regulate hippocampal- and striatal-dependent memory formation. Four SS14 receptor subtypes (SSTR1-4) are expressed in the hippocampus, but their respective roles in memory processes remain to be determined. OBJECTIVES: In the present study, effects of selective SSTR1-4 agonists on memory formation were assessed in a water-maze task which can engage either hippocampus-dependent "place" and/or striatum-dependent "cue" memory formation. MATERIALS AND METHODS: Mice received an intrahippocampal injection of one of each of the selective agonists and were then trained to locate an escape platform based on either distal cues (place memory) or a visible proximal cue (cue memory). Retention was tested 24 h later on probe trials aimed at identifying which memory strategy was preferentially retained. RESULTS: Both SS14 and the SSTR4 agonist (L-803,087) dramatically impaired place memory formation in a dose-dependent manner, whereas SSTR1 (L-797,591), SSTR2 (L-779,976), or SSTR3 (L-796,778) agonists did not yield any behavioral effects. However, unlike SS14, the SSTR4 agonist also dose-dependently enhanced cue-based memory formation. This effect was confirmed in another striatal-dependent memory task, the bar-pressing task, where L-803,087 improved memory of the instrumental response, whereas SS14 was once again ineffective. CONCLUSIONS: These data suggest that hippocampal SSTR4 are selectively involved in the selection of memory strategies by switching from the use of hippocampus-based multiple associations to the use of simple dorsal striatum-based behavioral responses. Possible neural mechanisms and functional implications are discussed.


Subject(s)
Hippocampus/physiology , Memory/physiology , Receptors, Somatostatin/physiology , Somatostatin/pharmacology , Amides/pharmacology , Animals , Conditioning, Operant/drug effects , Cues , Dose-Response Relationship, Drug , Hippocampus/drug effects , Indoles/pharmacology , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Microinjections , Neostriatum/drug effects , Neostriatum/physiology , Psychomotor Performance/drug effects , Receptors, Somatostatin/agonists
15.
Learn Mem ; 13(3): 342-8, 2006.
Article in English | MEDLINE | ID: mdl-16741285

ABSTRACT

Procedural and declarative memory systems are postulated to interact in either a synergistic or a competitive manner, and memory consolidation appears to be a highly critical stage for this process. However, the precise cellular mechanisms subserving these interactions remain unknown. To investigate this issue, 24-h retention performances were examined in mice given post-training intrahippocampal injections of forskolin (FK) aiming at stimulating hippocampal adenylyl cyclases (ACs). The injection was given at different time points over a period of 9 h following acquisition in either an appetitive bar-pressing task or water-maze tasks challenging respectively "response memory" and "place memory." Retention testing (24 h) showed that FK injection altered memory formation only when given within a 3- to 6-h time window after acquisition but yielded opposite memory effects as a function of task demands. Retention of the spatial task was impaired, whereas retention of both the cued-response in the water maze and the rewarded bar-press response were improved. Intrahippocampal injections of FK produced an increase in pCREB immunoreactivity, which was strictly limited to the hippocampus and lasted less than 2 h, suggesting that early effects (0-2 h) of FK-induced cAMP/CREB activation can be distinguished from late effects (3-6 h). These results delineate a consolidation period during which specific cAMP levels in the hippocampus play a crucial role in enhancing memory processes mediated by other brain regions (e.g., dorsal or ventral striatum) while eliminating interference by the formation of hippocampus-dependent memory.


Subject(s)
Adenylyl Cyclases/metabolism , Hippocampus/enzymology , Maze Learning/physiology , Memory/physiology , Analysis of Variance , Animals , Appetitive Behavior/drug effects , Appetitive Behavior/physiology , Colforsin/administration & dosage , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Enzyme Activators/administration & dosage , Hippocampus/drug effects , Male , Maze Learning/drug effects , Memory/drug effects , Mice , Mice, Inbred C57BL , Microinjections , Phosphorylation , Retention, Psychology/drug effects , Retention, Psychology/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...