Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Vet Comp Orthop Traumatol ; 25(2): 83-8, 2012.
Article in English | MEDLINE | ID: mdl-22027813

ABSTRACT

OBJECTIVE: To compare the mechanical properties of pancarpal arthrodesis (PCA) constructs stabilized at 20° of extension using either a 3.5 mm limited contact dynamic compression plate (LC-DCP) or a 3.5/2.7 mm hybrid plate (HP). METHODS: Seven forelimb pairs were used from dogs of similar size. All soft tissues were removed except for supporting structures of the carpus and proximal metacarpal region. All plates were accurately bent to 20°, and then instrumented with two, 350Ω strain gauges applied at the level of the bend. Constructs were embedded in epoxy moulds then mounted onto a servo-hydraulic testing machine. Specimens were loaded for 10 cycles at 100N, 200N and 300N. Tenth cycle construct compliance (CC), maximum angular deformation (MAD), and peak plate strain (PPS) were compared using two-factor analysis of variance (ANOVA) and Student-Newman-Keuls post-hoc tests (p <0.05). RESULTS: Regardless of load, CC was 29% to 33% smaller in the HP than the LC-DCP group (p <0.03). In each group, the CC significantly increased with increasing loads (p <0.02). Mean MAD was 19% to 22% less in HP than LC-DCP constructs, with significant differences seen at 200N and 300N loads. In both groups, MAD was significantly greater with increasing loads (p <0.02). In addition, PPS was 37% to 43% smaller for HP than LC-DCP. CLINICAL SIGNIFICANCE: The mechanical advantages of the HP over the LC-DCP make it a viable alternative for PCA. Smaller CC, MAD and PSS of the HP may reduce the risk of implant failure and postoperative morbidity following PCA.


Subject(s)
Arthrodesis/veterinary , Bone Plates/veterinary , Carpus, Animal/surgery , Dogs , Animals , Biomechanical Phenomena , Cadaver , Materials Testing
2.
Vet Comp Orthop Traumatol ; 22(4): 264-9, 2009.
Article in English | MEDLINE | ID: mdl-19597632

ABSTRACT

OBJECTIVES: To compare the mechanical properties of various interlocking nail constructs in medio-lateral (ML) and cranio-caudal (CC) bending. METHODS: Synthetic bone models simulating a severely comminuted tibial fracture were treated with either screwed or bolted, 6 or 8 mm standard interlocking nails (ILN), or an angle-stable ILN (AS-ILN), after which they were then sequentially tested in ML and CC bending. Construct compliance, maximum angular deformation (MaxDef) and slack were statistically compared (p<0.05). RESULTS: The compliance of all constructs was significantly greater in CC than in ML bending. However, due to the presence of a greater slack in the ML plane, standard ILN constructs sustained significantly more deformation in that plane. Maximum deformation of the novel AS-ILN constructs was the smallest of all constructs and consistently occurred without slack regardless of bending direction. CLINICAL SIGNIFICANCE: This study suggested that standard ILN construct overall deformation and acute instability (slack) may be more critical in ML than in CC bending. Conversely, the small MaxDef and the absence of slack in both bending planes seen in novel angle-stable AS-ILN may provide optimal construct stability and in turn may be more conducive to bone healing.


Subject(s)
Bone Nails/veterinary , Bone and Bones/physiology , Animals , Biomechanical Phenomena , Dogs , Fracture Fixation, Internal/veterinary , Models, Biological , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL