Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz J Med Biol Res ; 52(10): e8391, 2019.
Article in English | MEDLINE | ID: mdl-31596311

ABSTRACT

The effect of a short-term creatine supplementation on hindlimb suspension (HS)-induced muscle atrophy was investigated. Creatine monohydrate (5 g/kg b.w. per day) or placebo, divided in 2 daily doses, was given by oral gavage for 5 days. Rats were maintained in HS with dietary supplementation concomitantly for 5 days. Body weight, soleus and EDL muscle masses, and cross-sectional areas (CSA) of the muscle fibers were measured. Signaling pathways associated with skeletal muscle mass regulation (FST, MSTN, FAK, IGF-1, MGF, Akt, mTOR, atrogin-1, and MuRF1 expressions, and Akt, S6, GSK3B, and 4EBP1 proteins) were evaluated in the muscles. Soleus muscle exhibited more atrophy than the EDL muscle due to HS. Creatine supplementation attenuated the decrease of wet weight and increased p-4EBP1 protein in the EDL muscle of HS rats. Also, creatine increased mTOR and atrogin-1 expressions in the same muscle and condition. In the absence of HS, creatine supplementation increased FAK and decreased MGF expressions in the EDL muscle. Creatine attenuated the increase in FST expression due to HS in the soleus muscle. MuRF1 expression increased in the soleus muscle due to creatine supplementation in HS animals whereas atrogin-1 expression increased still further in this group compared with untreated HS rats. In conclusion, short-term creatine supplementation changed protein metabolism signaling in soleus and EDL muscles. However, creatine supplementation only slightly attenuated the mass loss of both muscles and did not prevent the CSA reduction and muscle strength decrease induced by HS for 5 days.


Subject(s)
Creatine/administration & dosage , Dietary Supplements , Hindlimb Suspension/adverse effects , Muscular Atrophy/diet therapy , Animals , Disease Models, Animal , Male , Muscle, Skeletal/drug effects , Muscular Atrophy/etiology , Rats , Rats, Wistar , Signal Transduction/drug effects
2.
Braz. j. med. biol. res ; 52(10): e8391, 2019. tab, graf
Article in English | LILACS | ID: biblio-1039250

ABSTRACT

The effect of a short-term creatine supplementation on hindlimb suspension (HS)-induced muscle atrophy was investigated. Creatine monohydrate (5 g/kg b.w. per day) or placebo, divided in 2 daily doses, was given by oral gavage for 5 days. Rats were maintained in HS with dietary supplementation concomitantly for 5 days. Body weight, soleus and EDL muscle masses, and cross-sectional areas (CSA) of the muscle fibers were measured. Signaling pathways associated with skeletal muscle mass regulation (FST, MSTN, FAK, IGF-1, MGF, Akt, mTOR, atrogin-1, and MuRF1 expressions, and Akt, S6, GSK3B, and 4EBP1 proteins) were evaluated in the muscles. Soleus muscle exhibited more atrophy than the EDL muscle due to HS. Creatine supplementation attenuated the decrease of wet weight and increased p-4EBP1 protein in the EDL muscle of HS rats. Also, creatine increased mTOR and atrogin-1 expressions in the same muscle and condition. In the absence of HS, creatine supplementation increased FAK and decreased MGF expressions in the EDL muscle. Creatine attenuated the increase in FST expression due to HS in the soleus muscle. MuRF1 expression increased in the soleus muscle due to creatine supplementation in HS animals whereas atrogin-1 expression increased still further in this group compared with untreated HS rats. In conclusion, short-term creatine supplementation changed protein metabolism signaling in soleus and EDL muscles. However, creatine supplementation only slightly attenuated the mass loss of both muscles and did not prevent the CSA reduction and muscle strength decrease induced by HS for 5 days.


Subject(s)
Animals , Male , Rats , Muscular Atrophy/diet therapy , Hindlimb Suspension/adverse effects , Dietary Supplements , Creatine/administration & dosage , Muscular Atrophy/etiology , Signal Transduction/drug effects , Rats, Wistar , Muscle, Skeletal/drug effects , Disease Models, Animal
3.
J Sports Med Phys Fitness ; 55(5): 383-9, 2015 May.
Article in English | MEDLINE | ID: mdl-26068323

ABSTRACT

AIM: The aim of the present study was to evaluate the effect of oral caffeine ingestion during repeated sets of resistance. METHODS: Fourteen moderately resistance-trained men (20.9 ± 0.36 years and 77.62 ± 2.07 kg of body weight) ingested a dose of caffeine (5 mg.kg-1) or placebo prior to 3 sets of bench press and 3 sets of leg press exercises, respectively. The study used a double-blind, counterbalanced, crossover design. Repetitions completed and total weight lifted were recorded in each set. Readiness to invest in both physical (RTIPE) and mental (RTIME) effort were assessed prior each set, and rating of perceived exertion (RPE) was recorded after each set. Rest and peak heart rates were determined via telemetry. RESULTS: Caffeine ingestion result in increased number of repetitions to failure in bench press (F[1,13]=6.16, P=0.027) and leg press (F[1,13]=9.33, P=0.009) compared to placebo. The sum of repetitions performed in the 3 sets was 11.60% higher in bench press (26.86 ± 1.74; caffeine: 30.00 ± 1.87; P=0.027) and 19.10% in leg press (placebo: 40.0 ± 4.22; caffeine: 47.64 ± 4.69; P=0.009). Also, RTIME was increased in the caffeine condition both in bench press (F[1,13]=7.02, P=0.02) and in leg press (F[1,13]=5.41, P=0.03). There were no differences in RPE, RTIPE and HR (P>0.05) across conditions. CONCLUSION: Acute caffeine ingestion can improve performance in repeated sets to failure and increase RTIME in resistance-trained men.


Subject(s)
Athletic Performance , Caffeine/administration & dosage , Physical Endurance/drug effects , Resistance Training/methods , Weight Lifting/physiology , Adolescent , Adult , Central Nervous System Stimulants/administration & dosage , Cross-Over Studies , Double-Blind Method , Heart Rate/drug effects , Heart Rate/physiology , Humans , Male , Reference Values , Young Adult
4.
J Nutr Health Aging ; 18(10): 883-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25470803

ABSTRACT

UNLABELLED: Caffeine is a widely used nutritional supplement which has been shown to enhance both physical and cognitive performance in younger adults. However, few studies have assessed the effect of caffeine ingestion on performance, particularly functional performance in older adults. The present study aims to assess the effect of acute caffeine ingestion on functional performance, manual dexterity and readiness to invest effort in older adults. METHODS: 19 apparently healthy, volunteers (10 females and 9 males aged 61-79; 66 ± 2 years) performed tests of functional fitness and manual dexterity post ingestion of caffeine (3mg*kg-1) or placebo in a randomised order. Pre and 60 minutes post ingestion, participants also completed measures of readiness to invest physical (RTIPE) and mental (RTIME) effort. RESULTS: A series of repeated measures ANOVAS indicated enhanced performance in the following functional fitness tests; arm curls (P = .04), 8 foot up and go (P = .007), six minute walk (P = .016). Manual dexterity was also improved in the presence of caffeine (P = .001). RTIME increased (P = .015) pre to post ingestion in the caffeine condition but not in the placebo condition. There were no significant main effects or interactions for RTIPE or gender in any analysis (all P > .05). CONCLUSIONS: The results of this study suggest that acute caffeine ingestion positively enhances functional performance, manual dexterity and readiness to invest effort in apparently healthy older adults.


Subject(s)
Caffeine/pharmacology , Psychomotor Performance/drug effects , Aged , Caffeine/administration & dosage , Female , Humans , Male , Psychomotor Performance/physiology
5.
Acta Physiol (Oxf) ; 212(1): 62-74, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24962220

ABSTRACT

AIM: Investigate, in healthy sedentary rats, the potential mechanisms involved on the effects of beta hydroxy beta methylbutyrate (HMB) supplementation upon the glycaemic homeostasis, by evaluating the insulin sensitivity in liver, skeletal muscle, and white adipose tissue. METHODS: Rats were supplemented with either beta hydroxy beta methylbutyrate (320 mg kg(-1)  BW) or saline by gavage for 4 weeks. After the experimental period, the animals were subjected to the glucose tolerance test (GTT) and plasma non-esterified fatty acids (NEFA) concentration measurements. The soleus skeletal muscle, liver and white adipose tissue were removed for molecular (western blotting and RT-PCR) and histological analysis. RESULTS: The beta hydroxy beta methylbutyrate supplemented rats presented: (i) higher ratio between the area under the curve (AUC) of insulinaemia and glycaemia during glucose tolerance test; (ii) impairment of insulin sensitivity on liver and soleus skeletal muscle after insulin overload; (iii) reduction of glucose transporter 4 (GLUT 4) total and plasma membrane content on soleus; (iv) increased hormone-sensitive lipase (HSL) mRNA and protein expression on white adipose tissue and plasma NEFA levels and (v) reduction of fibre cross-sectional area of soleus muscle. CONCLUSION: The data altogether indicate that beta hydroxy beta methylbutyrate supplementation impairs insulin sensitivity in healthy sedentary rats, which, in the long-term, could lead to an increased risk of developing type 2 diabetes.


Subject(s)
Dietary Supplements/toxicity , Insulin Resistance/physiology , Muscle, Skeletal/drug effects , Valerates/toxicity , Adipose Tissue/drug effects , Animals , Blotting, Western , Glucose Tolerance Test , Glucose Transporter Type 4/metabolism , Liver/drug effects , Male , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction
6.
Growth Horm IGF Res ; 21(2): 57-62, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21237681

ABSTRACT

OBJECTIVE: Beta-hydroxy-beta-methylbutyrate (HMß) is a metabolite of leucine widely used for improving sports performance. Although HMß is recognized to promote anabolic or anti-catabolic effects on protein metabolism, the impact of its long-term use on skeletal muscle and/or genes that control the skeletal protein balance is not fully known. This study aimed to investigate whether chronic HMß treatment affects the activity of GH/IGF-I axis and skeletal muscle IGF-I and myostatin mRNA expression. DESIGN: Rats were treated with HMß (320mg/kg BW) or vehicle, by gavage, for 4 weeks, and killed by decapitation. Blood was collected for evaluation of serum insulin, glucose and IGF-I concentrations. Samples of pituitary, liver, extensor digitorum longus (EDL) and soleus muscles were collected for total RNA or protein extraction to evaluate the expression of pituitary growth hormone (GH) gene (mRNA and protein), hepatic insulin-like growth factor I (IGF-I) mRNA, skeletal muscle IGF-I and myostatin mRNA by Northern blotting/real time-PCR, or Western blotting. RESULTS: Chronic HMß treatment increased the content of pituitary GH mRNA and GH, hepatic IGF-I mRNA and serum IGF-I concentration. No changes were detected on skeletal muscle IGF-I and myostatin mRNA expression. However, the HMß-treated rats although normoglycemic, exhibited hyperinsulinemia. CONCLUSIONS: The data presented herein extend the body of evidence on the potential role of HMß-treatment in stimulating GH/IGF-I axis activity. In spite of this effect, HMß supplementation also induces an apparent insulin resistance state which might limit the beneficial aspects of the former results, at least in rats under normal nutritional status and health conditions.


Subject(s)
Growth Hormone/metabolism , Hyperinsulinism/chemically induced , Insulin-Like Growth Factor I/metabolism , Valerates/toxicity , Animals , Growth Hormone/genetics , Hyperinsulinism/metabolism , Insulin-Like Growth Factor I/genetics , Male , Muscle, Skeletal/metabolism , Myostatin/genetics , Myostatin/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Valerates/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...