Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters











Publication year range
1.
Waste Manag ; 87: 279-287, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-31109527

ABSTRACT

Distinctions in hydrolysis and acidogenesis were examined for a series of anaerobic batch reactors inoculated with three different anaerobic mixed cultures (mesophilic, thermophilic and hyperthermophilic anaerobic sludge) and operated at the temperature of inoculum's origin and additionally at 70 °C. Hyperthermophilic temperatures led to increased hydrolysis rates during the start-up stage but a rapid drop in pH limited the overall hydrolysis efficiency, indicating the importance of pH control to sustain the high reaction rates at higher temperatures. No significant difference (P > 0.05) was observed among hydrolysis efficiencies obtained for different reactors which ranged between 27 ±â€¯3% and 40 ±â€¯14%. The highest fermentation yield of 0.44 g COD of fermentation products/g VSS-CODadded was obtained under thermophilic conditions, followed by mesophilic (0.33 g COD ferm. prod./g VSS-CODadded) and hyperthermophilic conditions (0.05-0.08 g COD ferm. prod./g VSS-CODadded). Fermentative performance was better at mesophilic and thermophilic conditions as indicated by improved production of volatile fatty acids (VFA). VFAs accounted for 60-71% of the solubilised matter at thermophilic and mesophilic conditions. Acetic acid formed the primary VFA (70%) at mesophilic temperatures, while butyric acid was the major VFA at thermophilic (60%) conditions. Hyperthermophilic conditions led to increased production of lactic acid, which comprised up to 32% of the solubilised matter. Overall, the results indicate that different operating temperatures may not significantly affect the substrate degradation efficiency but clearly influence the biotransformation pathways.


Subject(s)
Bioreactors , Fatty Acids, Volatile , Acids , Fermentation , Hydrogen-Ion Concentration , Hydrolysis , Sewage , Temperature
2.
Waste Manag ; 71: 683-688, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28655465

ABSTRACT

As an alternative to applying the hydrothermal treatment to the raw algal feedstock before the anaerobic digestion (i.e. pre-treatment), one considered a post-treatment scenario where anaerobic digestion is directly used as the primary treatment while the hydrothermal treatment is thereafter applied to the digestate. Hydrothermal treatments such as wet oxidation (WetOx) and hydrothermal carbonization (HTC) were compared at a temperature of 200°C, for initial pressure of 0.1 and 0.82MPa, and no holding time after the process had reached the temperature setpoint. Both WetOx and HTC resulted in a substantial solids conversion (47-62% with HTC, 64-83% with WetOx, both at 0.82MPa) into soluble products, while some total chemical oxygen demand-based carbon loss from the solid-liquid phases was observed (20-39%). This generated high soluble products concentrations (from 6.2 to 10.9g soluble chemical oxygen demand/L). Biomethane potential tests showed that these hydrothermal treatments allowed for a 4-fold improvement of the digestate anaerobic biodegradability. The hydrothermal treatments increased the methane yield to about 200 LSTP CH4/kg volatile solids, when related to the untreated digestate, compared to 66 LSTP CH4/kg volatile solids, without treatment.


Subject(s)
Microalgae , Anaerobiosis , Bioreactors , Carbon , Methane/metabolism , Temperature
3.
Appl Biochem Biotechnol ; 172(2): 713-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24122627

ABSTRACT

Electricity generation in a microbial fuel cell (MFC) fed with carbon monoxide (CO) has been recently demonstrated; however, the microbial ecology of this system has not yet been described. In this work the diversity of the microbial community present at the anode of CO-fed MFCs was studied by performing denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS) analyses. HTS indicated a significant increase of the archaeal genus Methanobacterium and of the bacterial order Clostridiales, notably including Clostridium species, while in both MFCs DGGE identified members of the bacterial genera Geobacter, Desulfovibrio, and Clostridium, and of the archaeal genera Methanobacterium, Methanofollis, and Methanosaeta. In particular, the presence of Geobacter sulfurreducens was identified. Tolerance of G. sulfurreducens to CO was confirmed by growing G. sulfurreducens with acetate under a 100 % CO atmosphere. This observation, along with the identification of acetogens, supports the hypothesis of the two-step process in which CO is converted to acetate by the carboxidotrophic Bacteria and acetate is then oxidized by CO-tolerant electricigenic bacteria to produce electricity.


Subject(s)
Bioelectric Energy Sources/microbiology , Carbon Monoxide/pharmacology , Acetates/pharmacology , Archaea/classification , Bacteria/classification , Biodiversity , Denaturing Gradient Gel Electrophoresis , Electricity , Geobacter/drug effects , Geobacter/growth & development , High-Throughput Nucleotide Sequencing , Microbiota/drug effects , Phylogeny , Sewage/microbiology
4.
Bioresour Technol ; 130: 584-91, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23334014

ABSTRACT

This study demonstrates microbial electrolysis cell (MEC) scale-up from a 50mL to a 10L cell. Initially, a 50mL membraneless MEC with a gas diffusion cathode was operated on synthetic wastewater at different organic loads. It was concluded that process scale-up might be best accomplished using a "reactor-in-series" concept. Consequently, 855mL and 10L MECs were built and operated. By optimizing the hydraulic retention time (HRT) of the 855mL MEC and individually controlling the applied voltages of three anodic compartments with a real-time optimization algorithm, a COD removal of 5.7g L(R)(-1)d(-1) and a hydrogen production of 1.0-2.6L L(R)(-1)d(-1) was achieved. Furthermore, a two MECs in series 10L setup was constructed and operated on municipal wastewater. This test showed a COD removal rate of 0.5g L(R)(-1)d(-1), a removal efficiency of 60-76%, and an energy consumption of 0.9Whperg of COD removed.


Subject(s)
Hydrogen/metabolism , Water Purification/instrumentation , Biological Oxygen Demand Analysis , Electrolysis , Industrial Microbiology , Wastewater
5.
Enzyme Microb Technol ; 51(3): 163-70, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22759536

ABSTRACT

This study demonstrated electricity generation in a thermophilic microbial fuel cell (MFC) operated on synthesis gas (syngas) as the sole electron donor. At 50°C, a volumetric power output of 30-35 mWL(R)(-1) and a syngas conversion efficiency of 87-98% was achieved. The observed pathway of syngas conversion to electricity primarily consisted of a two-step process, where the carbon monoxide and hydrogen were first converted to acetate, which was then consumed by the anodophilic bacteria to produce electricity. A denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rDNA revealed the presence of Geobacter species, Acetobacter, methanogens and several uncultured bacteria and archaea in the anodic chamber.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Bioelectric Energy Sources/microbiology , Biotechnology/methods , Carbon Monoxide/metabolism , Gases/metabolism , Acetates/metabolism , Acetobacter/classification , Acetobacter/genetics , Acetobacter/metabolism , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Culture Media , DNA, Ribosomal/analysis , Denaturing Gradient Gel Electrophoresis , Electricity , Geobacter/classification , Geobacter/genetics , Geobacter/metabolism , Hot Temperature , Hydrogen/metabolism , Methane/metabolism , RNA, Ribosomal, 16S/genetics
6.
Bioresour Technol ; 102(23): 10898-906, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21983405

ABSTRACT

Electricity generation in a microbial fuel cell (MFC) using carbon monoxide (CO) or synthesis gas (syngas) as a carbon source has been demonstrated recently. A major challenge associated with CO or syngas utilization is the mass transfer limitation of these sparingly soluble gases in the aqueous phase. This study evaluated the applicability of a dense polymer silicone membrane and thin wall silicone tubing for CO mass transfer in MFCs. Replacing the sparger used in our previous study with the membrane systems for CO delivery resulted in improved MFC performance and CO transformation efficiency. A power output and CO transformation efficiency of up to 18 mW LR(-1) (normalized to anode compartment volume) and 98%, respectively, was obtained. The use of membrane systems offers the advantage of improved mass transfer and reduced reactor volume, thus increasing the volumetric power output of MFCs operating on a gaseous substrate such as CO.


Subject(s)
Bioelectric Energy Sources , Bioreactors , Silicones/chemistry , Biofilms , Biotechnology/methods , Carbon Monoxide/chemistry , Electricity , Electrodes , Equipment Design , Gases , Membranes, Artificial , Models, Chemical , Polymers/chemistry
7.
Bioresour Technol ; 102(20): 9593-8, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21875792

ABSTRACT

This study investigates the influence of anode and cathode size and arrangement on hydrogen production in a membrane-less flat-plate microbial electrolysis cell (MEC). Protein measurements were used to evaluate microbial density in the carbon felt anode. The protein concentration was observed to significantly decrease with the increase in distance from the anode-cathode interface. Cathode placement on both sides of the carbon felt anode was found to increase the current, but also led to increased losses of hydrogen to hydrogenotrophic activity leading to methane production. Overall, the best performance was obtained in the flat-plate MEC with a two-layer 10 mm thick carbon felt anode and a single gas-diffusion cathode sandwiched between the anode and the hydrogen collection compartments.


Subject(s)
Bioelectric Energy Sources , Electrodes , Electrolysis , Hydrogen/metabolism
8.
Bioresour Technol ; 102(10): 5685-91, 2011 May.
Article in English | MEDLINE | ID: mdl-21435864

ABSTRACT

This study demonstrates enhanced methane production from wastewater in laboratory-scale anaerobic reactors equipped with electrodes for water electrolysis. The electrodes were installed in the reactor sludge bed and a voltage of 2.8-3.5 V was applied resulting in a continuous supply of oxygen and hydrogen. The oxygen created micro-aerobic conditions, which facilitated hydrolysis of synthetic wastewater and reduced the release of hydrogen sulfide to the biogas. A portion of the hydrogen produced electrolytically escaped to the biogas improving its combustion properties, while another part was converted to methane by hydrogenotrophic methanogens, increasing the net methane production. The presence of oxygen in the biogas was minimized by limiting the applied voltage. At a volumetric energy consumption of 0.2-0.3 Wh/L(R), successful treatment of both low and high strength synthetic wastewaters was demonstrated. Methane production was increased by 10-25% and reactor stability was improved in comparison to a conventional anaerobic reactor.


Subject(s)
Electrochemistry/methods , Industrial Waste , Water Pollutants/metabolism , Anaerobiosis , Bioreactors
9.
Water Res ; 45(4): 1571-8, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21167550

ABSTRACT

This work evaluates the impact of the external resistance (electrical load) on the long-term performance of a microbial fuel cell (MFC) and demonstrates the real-time optimization of the external resistance. For this purpose, acetate-fed MFCs were operated at external resistances, which were above, below, or equal to the internal resistance of a corresponding MFC. A perturbation/observation algorithm was used for the real-time optimal selection of the external resistance. MFC operation at the optimal external resistance resulted in increased power output, improved Coulombic efficiency, and low methane production. Furthermore, the efficiency of the perturbation/observation algorithm for maximizing long-term MFC performance was confirmed by operating an MFC fed with synthetic wastewater for over 40 days. In this test an average Coulombic efficiency of 29% was achieved.


Subject(s)
Bioelectric Energy Sources/standards , Acetates/analysis , Electric Impedance , Electrodes , Solubility , Time Factors , Waste Disposal, Fluid
10.
Enzyme Microb Technol ; 46(6): 450-5, 2010 May 05.
Article in English | MEDLINE | ID: mdl-25919620

ABSTRACT

Electricity production from carbon monoxide (CO) is demonstrated in a single chamber microbial fuel cell (MFC) with a CoTMPP-based air cathode. The MFC was inoculated with anaerobic sludge and continuously sparged with CO as a sole carbon source. Volumetric power output was maximized at a CO flow rate of 4.8LLR(-1)d(-1) reaching 6.4mWLR(-1). Several soluble and gaseous degradation products including hydrogen, methane, and acetate were detected, resulting in a relatively low apparent Coulombic efficiency of 8.7%. Tests also demonstrated electricity production from hydrogen and acetate with the highest and fastest increase in voltage exhibited after acetate injection. It is hypothesized that electricity generation in a CO-fed MFC is accomplished by a consortium of carboxydotrophic and carbon monoxide - tolerant anodophilic microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL