Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 7459, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25500734

ABSTRACT

Controlling domain wall (DW) generation and dynamics behaviour in ferromagnetic nanowire is critical to the engineering of domain wall-based non-volatile logic and magnetic memory devices. Previous research showed that DW generation suffered from a random or stochastic nature and that makes the realization of DW based device a challenging task. Conventionally, stabilizing a Néel DW requires a long pulsed current and the assistance of an external magnetic field. Here, we demonstrate a method to deterministically produce single DW without having to compromise the pulse duration. No external field is required to stabilize the DW. This is achieved by controlling the stray field magnetostatic interaction between a current-carrying strip line generated DW and the edge of the nanowire. The natural edge-field assisted domain wall generation process was found to be twice as fast as the conventional methods and requires less current density. Such deterministic DW generation method could potentially bring DW device technology, a step closer to on-chip application.

2.
Rev Sci Instrum ; 82(10): 103905, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22047310

ABSTRACT

An experimental setup has been realized to measure weak magnetic moments which can be modulated at radio frequencies (~1-5 MHz). Using an optimized radio-frequency (RF) pickup coil and lock-in amplifier, an experimental sensitivity of 10(-15) Am(2) corresponding to 10(-18) emu has been demonstrated with a 1 s time constant. The detection limit at room temperature is 9.3 × 10(-16) Am(2)/√Hz limited by Johnson noise of the coil. The setup has been used to directly measure the magnetic moment due to a small number (~7 × 10(8)) of spin polarized electrons generated by polarization modulated optical radiation in GaAs and Ge.

3.
Phys Rev Lett ; 107(16): 166603, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-22107412

ABSTRACT

We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6±1.0 ns for electrons in bulk Ge at 127 K was extracted.

SELECTION OF CITATIONS
SEARCH DETAIL
...