Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 243(4): 909-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26721646

ABSTRACT

MAIN CONCLUSION: Arabidopsis PHS1, initially known as an actor of cytoskeleton organization, is a positive regulator of flowering in the photoperiodic and autonomous pathways by modulating both CO and FLC mRNA levels. Protein phosphorylation and dephosphorylation is a major type of post-translational modification, controlling many biological processes. In Arabidopsis thaliana, five genes encoding MAPK phosphatases (MKP)-like proteins have been identified. Among them, PROPYZAMIDE HYPERSENSITIVE 1 (PHS1) encoding a dual-specificity protein tyrosine phosphatase (DsPTP) has been shown to be involved in microtubule organization, germination and ABA-regulated stomatal opening. Here, we demonstrate that PHS1 also regulates flowering under long-day and short-day conditions. Using physiological, genetic and molecular approaches, we have shown that the late flowering phenotype of the knock-out phs1-5 mutant is linked to a higher expression of FLOWERING LOCUS C (FLC). In contrast, a decline of both CONSTANS (CO) and FLOWERING LOCUS T (FT) expression is observed in the knock-out phs1-5 mutant, especially at the end of the light period under long-day conditions when the induction of flowering occurs. We show that this partial loss of sensitivity to photoperiodic induction is independent of FLC. Our results thus indicate that PHS1 plays a dual role in flowering, in the photoperiodic and autonomous pathways, by modulating both CO and FLC mRNA levels. Our work reveals a novel actor in the complex network of the flowering regulation.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Flowers/physiology , Protein Tyrosine Phosphatases/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Mutation , Photoperiod , Plants, Genetically Modified , Protein Tyrosine Phosphatases/genetics , RNA Processing, Post-Transcriptional , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Biochem J ; 455(1): 75-85, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23844938

ABSTRACT

The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450-CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate-enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies.


Subject(s)
Aedes/drug effects , Anopheles/drug effects , Cytochrome P-450 Enzyme System/metabolism , Insect Proteins/metabolism , Insect Vectors/drug effects , Insecticides/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Aedes/enzymology , Animals , Anopheles/enzymology , Benzaldehydes/chemistry , Benzaldehydes/metabolism , Benzaldehydes/pharmacology , Benzoates/metabolism , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Engineering , Inactivation, Metabolic , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Vectors/enzymology , Insecticide Resistance/drug effects , Insecticide Resistance/genetics , Insecticides/chemistry , Insecticides/pharmacology , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Docking Simulation , NADPH-Ferrihemoprotein Reductase/chemistry , NADPH-Ferrihemoprotein Reductase/genetics , Oxidation-Reduction , Pyrethrins/chemistry , Pyrethrins/metabolism , Pyrethrins/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics
3.
Mol Biosyst ; 9(9): 2282-95, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23760157

ABSTRACT

TCPs are plant specific transcription factors with non-canonical basic helix-loop-helix domains. While Arabidopsis thaliana has 24 TCPs involved in cell proliferation and differentiation, their mode of action has not been fully elucidated. Using bioinformatic tools, we demonstrate that TCP transcription factors belong to the intrinsically disordered proteins (IDP) family and that disorder is higher in class I TCPs than in class II TCPs. In particular, using bioinformatic and biochemical approaches, we have characterized TCP8, a class I TCP. TCP8 exhibits three intrinsically disordered regions (IDR) made of more than 50 consecutive residues, in which phosphorylable Ser residues are mainly clustered. Phosphorylation of Ser-211 that belongs to the central IDR was confirmed by mass spectrometry. Yeast two-hybrid assays also showed that the C-terminal IDR corresponds to a transactivation domain. Moreover, biochemical experiments demonstrated that TCP8 tends to oligomerize in dimers, trimers and higher-order multimers. Bimolecular fluorescence complementation (BiFC) experiments carried out on a truncated form of TCP8 lacking the C-terminal IDR indicated that it is effectively required for the pronounced self-assembly of TCP8. These data were reinforced by the prediction of a coiled coil domain in this IDR. The C-terminal IDR acts thus as an oligomerization domain and also a transactivation domain. Moreover, many Molecular Recognition Features (MoRFs) were predicted, indicating that TCP8 could interact with several partners to fulfill a fine regulation of transcription in response to various stimuli.


Subject(s)
Arabidopsis Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Arabidopsis , Arabidopsis Proteins/metabolism , Intrinsically Disordered Proteins/metabolism , Molecular Sequence Data , Molecular Weight , Phosphorylation , Protein Binding , Protein Multimerization , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...