Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 891: 164279, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37211134

ABSTRACT

Treatment of ammonia nitrogen (NH3-N) in mine effluents generates N-rich residual materials, such as moving bed biofilm reactor (MBBR) biomass and spent zeolite. Using them as substitutes for mineral fertilizers in revegetation of mine tailings avoids disposal and contributes to a circular economy. The study evaluated the effect of MBBR biomass and N-rich zeolite amendments on above- and below-ground growth and foliar nutrient and trace element concentrations of a legume and several graminoid species grown on non-acid generating gold mine tailings. N-rich zeolite (clinoptilolite) was produced by treating saline (up to 60 mS/cm) synthetic and real mine effluents (250 vs 280 mg/L NH3-N). A three-month pot experiment was conducted with a dose of tested amendments equivalent to 100 kg/ha N and compared to unamended tailings (as negative control), tailings with a mineral NPK fertilizer, and a topsoil (as positive controls). Higher foliar N concentrations were found in amended and fertilized tailings vs negative control, but N was less available in the zeolite treatments than in other tailings treatments. For all plant species, the mean leaf area and above-ground, root, and total biomasses were similar in the zeolite-amended tailings to the unamended tailings, while the MBBR biomass amendment resulted in similar above- and below-ground growth to the NPK fertilized tailings and the commercial topsoil. Trace metal concentrations in water leaching from the amended tailings remained low, but tailings amended with zeolite exported NO3-N concentrations up to 10 times greater (>200 mg/L) after 28 days compared to all other treatments. Foliar Na concentrations in zeolite mixtures were six to nine times higher than in other treatments. The MBBR biomass is a promising potential amendment for revegetation of mine tailings. However, Se concentrations in plants after MBBR biomass amendment should not be underestimated, while Cr transfer from tailings to plants was observed.


Subject(s)
Soil Pollutants , Zeolites , Soil , Biomass , Gold , Biofilms , Bioreactors , Plants , Soil Pollutants/analysis
2.
Front Microbiol ; 11: 575625, 2020.
Article in English | MEDLINE | ID: mdl-33329437

ABSTRACT

Abandoned unrestored mines are an important environmental concern as they typically remain unvegetated for decades, exposing vast amounts of mine waste to erosion. Several factors limit the revegetation of these sites, including extreme abiotic and unfavorable biotic conditions. However, some pioneer tree species having high levels of genetic diversity, such as balsam poplar (Populus balsamifera), can naturally colonize these sites and initiate plant succession. This suggests that some tree genotypes are likely more suited for acclimation to the conditions of mine wastes. In this study, we selected two contrasting mine waste storage facilities (waste rock from a gold mine and tailings from a molybdenum mine) from the Abitibi region of Quebec (Canada), on which poplars were found to have grown naturally. First, we assessed in situ the impact of vegetation presence on each mine waste type. The presence of balsam poplars improved soil health locally by modifying the physicochemical properties (e.g., higher nutrient content and pH) of the mine wastes and causing an important shift in their bacterial and fungal community compositions, going from lithotrophic communities that dominate mine waste environments to heterotrophic communities involved in nutrient cycling. Next, in a greenhouse experiment we assessed the impact of plant genotype when grown in these mine wastes. Ten genotypes of P. balsamifera were collected locally, found growing either at the mine sites or in the surrounding natural forest. Tree growth was monitored over two growing seasons, after which the effects of genotype-by-environment interactions were assessed by measuring the physicochemical properties of the substrates and the changes in microbial community assembly. Although substrate type was identified as the main driver of rhizosphere microbiome diversity and community structure, a significant effect due to tree genotype was also detected, particularly for bacterial communities. Plant genotype also influenced aboveground tree growth and the physicochemical properties of the substrates. These results highlight the influence of balsam poplar genotype on the soil environment and the potential importance of tree genotype selection in the context of mine waste revegetation.

3.
J Hazard Mater ; 386: 121920, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31884367

ABSTRACT

Refractory ores, in which gold is often embedded within As-bearing and acid-generating sulfide minerals, are becoming the main gold source worldwide. These ores require an oxidizing pre-treatment, prior to cyanidation, to efficiently breakdown the sulfides and enhance gold liberation. As a result, large volumes of As-rich effluents (> 500 mg/L) are produced through the pre-oxidation of refractory gold ores and/or the exposure of As-bearing tailings upon exposure to air and water. Limited information is available on performant treatment of these effluents, especially of pre-oxidation effluents characterized by a complex chemistry, extremely acidic or alkaline pH and high concentrations of arsenic. The treatment of As-rich effluents is mainly based on precipitation (using Al or Fe salts and/or Ca-based compounds) and (electro)-chemical or biological oxidation processes. A performant treatment process must maximize As removal from contaminated mine water and allow for the production of residues that are geochemically stable over the long term. An extensive literature review showed that Fe(III)-As(V) precipitates, especially bioscorodite and (nano)scorodite, appear to be the most appropriate forms to immobilize As due to their low solubility and high stability, especially when encapsulated within an inert material such as hydroxyl gels. Research is still required to assess the long-term stability of these As-bearing residues under mine-site conditions for the sustainable exploitation of refractory gold deposits.

SELECTION OF CITATIONS
SEARCH DETAIL
...