Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 191(3): 1596-1611, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36527697

ABSTRACT

Resistance to cucumber mosaic virus (CMV) in melon (Cucumis melo L.) has been described in several exotic accessions and is controlled by a recessive resistance gene, cmv1, that encodes a vacuolar protein sorting 41 (CmVPS41). cmv1 prevents systemic infection by restricting the virus to the bundle sheath cells, preventing viral phloem entry. CmVPS41 from different resistant accessions carries two causal mutations, either a G85E change, found in Pat-81 and Freeman's cucumber, or L348R, found in PI161375, cultivar Songwhan Charmi (SC). Here, we analyzed the subcellular localization of CmVPS41 in Nicotiana benthamiana and found differential structures in resistant and susceptible accessions. Susceptible accessions showed nuclear and membrane spots and many transvacuolar strands, whereas the resistant accessions showed many intravacuolar invaginations. These specific structures colocalized with late endosomes. Artificial CmVPS41 carrying individual mutations causing resistance in the genetic background of CmVPS41 from the susceptible variety Piel de Sapo (PS) revealed that the structure most correlated with resistance was the absence of transvacuolar strands. Coexpression of CmVPS41 with viral movement proteins, the determinant of virulence, did not change these localizations; however, infiltration of CmVPS41 from either SC or PS accessions in CMV-infected N. benthamiana leaves showed a localization pattern closer to each other, with up to 30% cells showing some membrane spots in the CmVPS41SC and fewer transvacuolar strands (reduced from a mean of 4 to 1-2) with CmVPS41PS. Our results suggest that the distribution of CmVPS41PS in late endosomes includes transvacuolar strands that facilitate CMV infection and that CmVPS41 re-localizes during viral infection.


Subject(s)
Cucumovirus , Cytomegalovirus Infections , Humans , Cucumovirus/genetics , Genes, Plant , Viral Proteins/metabolism , Mutation/genetics , Cytomegalovirus Infections/genetics , Plant Diseases/genetics
2.
Nat Commun ; 13(1): 5625, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163135

ABSTRACT

Transitioning from spores to hyphae is pivotal to host invasion by the plant pathogenic fungus Zymoseptoria tritici. This dimorphic switch can be initiated by high temperature in vitro (~27 °C); however, such a condition may induce cellular heat stress, questioning its relevance to field infections. Here, we study the regulation of the dimorphic switch by temperature and other factors. Climate data from wheat-growing areas indicate that the pathogen sporadically experiences high temperatures such as 27 °C during summer months. However, using a fluorescent dimorphic switch reporter (FDR1) in four wild-type strains, we show that dimorphic switching already initiates at 15-18 °C, and is enhanced by wheat leaf surface compounds. Transcriptomics reveals 1261 genes that are up- or down-regulated in hyphae of all strains. These pan-strain core dimorphism genes (PCDGs) encode known effectors, dimorphism and transcription factors, and light-responsive proteins (velvet factors, opsins, putative blue light receptors). An FDR1-based genetic screen reveals a crucial role for the white-collar complex (WCC) in dimorphism and virulence, mediated by control of PCDG expression. Thus, WCC integrates light with biotic and abiotic cues to orchestrate Z. tritici infection.


Subject(s)
Plant Diseases , Sex Characteristics , Ascomycota , Cues , Opsins , Plant Diseases/microbiology , Temperature , Transcription Factors , Triticum/genetics , Triticum/microbiology
3.
Fungal Genet Biol ; 135: 103286, 2020 02.
Article in English | MEDLINE | ID: mdl-31672687

ABSTRACT

The fungal cell wall consists of proteins and polysaccharides, formed by the co-ordinated activity of enzymes, such as chitin or glucan synthases. These enzymes are delivered via secretory vesicles to the hyphal tip. In the ascomycete Neurospora crassa, chitin synthases and ß(1,3)-glucan synthase are transported in different vesicles, whereas they co-travel along microtubules in the basidiomycete Ustilago maydis. This suggests fundamental differences in wall synthesis between taxa. Here, we visualize the class V chitin synthase ZtChs5 and the ß(1,3)-glucan synthase ZtGcs1 in the ascomycete Zymoseptoria tritici. Live cell imaging demonstrate that both enzymes co-locate to the apical plasma membrane, but are not concentrated in the Spitzenkörper. Delivery involves co-transport along microtubules of the chitin and glucan synthase. Live cell imaging and electron microscopy suggest that both cell wall synthases locate in the same vesicle. Thus, microtubule-dependent co-delivery of cell wall synthases in the same vesicle is found in asco- and basidiomycetes.


Subject(s)
Ascomycota/enzymology , Chitin Synthase/metabolism , Glucosyltransferases/metabolism , Secretory Vesicles/physiology , Ascomycota/genetics , Basidiomycota/metabolism , Chitin Synthase/genetics , Cytoplasm/metabolism , Cytoplasm/ultrastructure , Glucosyltransferases/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Electron , Neurospora crassa/metabolism , Secretory Vesicles/ultrastructure
4.
Mol Plant Pathol ; 17(6): 973-84, 2016 08.
Article in English | MEDLINE | ID: mdl-26661733

ABSTRACT

Cucumber mosaic virus (CMV) has the broadest host range among plant viruses, causing enormous losses in agriculture. In melon, strains of subgroup II are unable to establish a systemic infection in the near-isogenic line SC12-1-99, which carries the recessive resistance gene cmv1 from the accession PI 161375, cultivar 'Songwhan Charmi'. Strains of subgroup I overcome cmv1 resistance in a manner dependent on the movement protein. We characterized the resistance conferred by cmv1 and established that CMV-LS (subgroup II) can move from cell to cell up to the veins in the inoculated leaf, but cannot enter the phloem. Immunogold labelling at transmission electron microscopy level showed that CMV-LS remains restricted to the bundle sheath (BS) cells in the resistant line, and does not invade vascular parenchyma or intermediary cells, whereas, in the susceptible line 'Piel de Sapo' (PS), the virus invades all vein cell types. These observations indicate that the resistant allele of cmv1 restricts systemic infection in a virus strain- and cell type-specific manner by acting as an important gatekeeper for virus progression from BS cells to phloem cells. Graft inoculation experiments showed that CMV-LS cannot move from the infected PS stock into the resistant cmv1 scion, thus suggesting an additional role for cmv1 related to CMV transport within or exit from the phloem. The characterization of this new form of recessive resistance, based on a restriction of virus systemic movement, opens up the possibility to design alternative approaches for breeding strategies in melon.


Subject(s)
Cucumovirus/physiology , Cucurbitaceae/metabolism , Cucurbitaceae/virology , Genes, Plant , Phloem/virology , Plant Proteins/metabolism , Cucurbitaceae/genetics , Cucurbitaceae/ultrastructure , Disease Resistance , Models, Biological , Phloem/ultrastructure , Plant Diseases/virology , Plant Leaves/virology , Plant Proteins/genetics
5.
Mol Plant Pathol ; 16(7): 675-84, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25470079

ABSTRACT

The resistance to a set of strains of Cucumber mosaic virus (CMV) in the melon accession PI 161375, cultivar 'Songwhan Charmi', is dependent on one recessive gene, cmv1, which confers total resistance, whereas a second set of strains is able to overcome it. We tested 11 strains of CMV subgroups I and II in the melon line SC12-1-99, which carries the gene cmv1, and showed that this gene confers resistance to strains of subgroup II only and that restriction is not related to either viral replication or cell-to-cell movement. This is the first time that a resistant trait has been correlated with CMV subgroups. Using infectious clones of the CMV strains LS (subgroup II) and FNY (subgroup I), we generated rearrangements and viral chimaeras between both strains and established that the determinant of virulence against the gene cmv1 resides in the first 209 amino acids of the movement protein, as this region from FNY is sufficient to confer virulence to the LS clone in the line SC12-1-99. A comparison of the sequences of the strains of both subgroups in this region shows that there are five main positions shared by all strains of subgroup II, which are different from those of subgroup I. Site-directed mutagenesis of the CMV-LS clone to substitute these residues for those of CMV-FNY revealed that a combination of four of these changes [the group 64-68 (SNNLL to HGRIA), and the point mutations R81C, G171T and A195I] was required for a complete gain of function of the LS MP in the resistant melon plant.


Subject(s)
Cucumovirus/pathogenicity , Cucurbitaceae/virology , Viral Proteins/genetics , Virulence/genetics , Amino Acid Sequence , Molecular Sequence Data , Sequence Homology, Amino Acid , Viral Proteins/chemistry
6.
J Integr Plant Biol ; 57(6): 591-601, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25319151

ABSTRACT

Peroxiredoxins (Prx) catalyse the reduction of hydrogen peroxide (H2O2) and, in association with catalases and other peroxidases, may participate in signal transduction by regulating intercellular H2O2 concentration that in turn can control gene transcription and cell signaling. Using virus-induced-gene-silencing (VIGS), 2-Cys Peroxiredoxin (2CysPrx) family and type-II Peroxiredoxin B (PrxIIB) gene were silenced in Nicotiana benthamiana, to study the impact that the loss of function of each Prx would have in the antioxidant system under control (22 °C) and severe heat stress conditions (48 °C). The results showed that both Prxs, although in different organelles, influence the regeneration of ascorbate to a significant extent, but with different purposes. 2CysPrx affects abscisic acid (ABA) biosynthesis through ascorbate, while PrxIIB does it probably through the xanthophyll cycle. Moreover, 2CysPrx is key in H2O2 scavenging and in consequence in the regulation of ABA signaling downstream of reactive oxygen species and PrxIIB provides an important assistance for H2O2 peroxisome scavenges.


Subject(s)
Cysteine/metabolism , Gene Silencing , Nicotiana/metabolism , Peroxiredoxins/genetics , Signal Transduction , Stress, Physiological , Abscisic Acid/metabolism , Anthocyanins/metabolism , Biosynthetic Pathways/genetics , Carotenoids/metabolism , Chlorophyll/metabolism , Chloroplasts/genetics , Cytosol/metabolism , Fluorescence , Gene Expression Regulation, Plant , Genes, Plant , Glutathione/metabolism , Hydrogen Peroxide/metabolism , NADP/metabolism , Oxidation-Reduction , Oxidative Stress/genetics , Peroxiredoxins/metabolism , Phenotype , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction/genetics , Stress, Physiological/genetics , Nicotiana/genetics
7.
Appl Microbiol Biotechnol ; 91(3): 823-34, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21562979

ABSTRACT

A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in the degradation of different hydrocarbons, and to assess their biodegradation potential for this complex heavy oil. After a 17-month enrichment in weathered fuel, the bacterial community, initially consisting mainly of Methylophaga species, underwent a major selective pressure in favor of obligate hydrocarbonoclastic microorganisms, such as Alcanivorax and Marinobacter spp. and other hydrocarbon-degrading taxa (Thalassospira and Alcaligenes), and showed strong biodegradation potential. This ranged from >99% for all low- and medium-molecular-weight alkanes (C(15)-C(27)) and polycyclic aromatic hydrocarbons (C(0)- to C(2)- naphthalene, anthracene, phenanthrene, dibenzothiophene, and carbazole), to 75-98% for higher molecular-weight alkanes (C(28)-C(40)) and to 55-80% for the C(3) derivatives of tricyclic and tetracyclic polycyclic aromatic hydrocarbons (PAHs) (e.g., C(3)-chrysenes), in 60 days. The numbers of total heterotrophs and of n-alkane-, aliphatic-, and PAH degraders, as well as the structures of these populations, were monitored throughout the biodegradation process. The salinity of the counting medium affects the counts of PAH degraders, while the carbon source (n-hexadecane vs. a mixture of aliphatic hydrocarbons) is a key factor when counting aliphatic degraders. These limitations notwithstanding, some bacterial genera associated with hydrocarbon degradation (mainly belonging to α- and γ-Proteobacteria, including the hydrocarbonoclastic Alcanivorax and Marinobacter) were identified. We conclude that Thalassospira and Roseobacter contribute to the degradation of aliphatic hydrocarbons, whereas Mesorhizobium and Muricauda participate in the degradation of PAHs.


Subject(s)
Fuel Oils/microbiology , Hydrocarbons/metabolism , Alphaproteobacteria/isolation & purification , Alphaproteobacteria/metabolism , Aquatic Organisms/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacterial Typing Techniques , Base Sequence , Biodegradation, Environmental , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Microbial Consortia , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...