Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
World J Hepatol ; 9(8): 418-426, 2017 Mar 18.
Article in English | MEDLINE | ID: mdl-28357029

ABSTRACT

AIM: To evaluate the effects of chronic exposure to ethanol in the liver and the expression of inflammatory genes in zebrafish. METHODS: Zebrafish (n = 104), wild type, adult, male and female, were divided into two groups: Control and ethanol (0.05 v/v). The ethanol was directly added into water; tanks water were changed every two days and the ethanol replaced. The animals were fed twice a day with fish food until satiety. After two and four weeks of trial, livers were dissected, histological analysis (hematoxilin-eosin and Oil Red staining) and gene expression assessment of adiponectin, adiponectin receptor 2 (adipor2), sirtuin-1 (sirt-1), tumor necrosis factor-alpha (tnf-a), interleukin-1b (il-1b) and interleukin-10 (il-10) were performed. Ultrastructural evaluations were conducted at fourth week. RESULTS: Exposing zebrafish to 0.5% ethanol developed intense liver steatosis after four weeks, as demonstrated by oil red staining. In ethanol-treated animals, the main ultrastructural changes were related to cytoplasmic lipid particles and droplets, increased number of rough endoplasmic reticulum cisterns and glycogen particles. Between two and four weeks, hepatic mRNA expression of il-1b, sirt-1 and adipor2 were upregulated, indicating that ethanol triggered signaling molecules which are key elements in both hepatic inflammatory and protective responses. Adiponectin was not detected in the liver of animals exposed and not exposed to ethanol, and il-10 did not show significant difference. CONCLUSION: Data suggest that inflammatory signaling and ultrastructural alterations play a significant role during hepatic steatosis in zebrafish chronically exposed to ethanol.

2.
Biores Open Access ; 5(1): 1-5, 2016.
Article in English | MEDLINE | ID: mdl-26862467

ABSTRACT

Ethanol is a widely consumed drug, which acts on the central nervous system to induce behavioral alterations ranging from disinhibition to sedation. Recent studies have produced accumulating evidence for the therapeutic role of probiotic bacteria in behavior. We aimed to investigate the effect of Lactobacillus rhamnosus GG (LGG) on the behavior of adult zebrafish chronically exposed to ethanol. Adult wild-type zebrafish were randomly divided into four groups, each containing 15 fish. The following groups were formed: Control (C), received unsupplemented feed during the trial period; Probiotic (P), fed with feed supplemented with LGG; Ethanol (E), received unsupplemented feed and 0.5% of ethanol directly added to the tank water; and Probiotic+Ethanol (P+E), group under ethanol exposure (0.5%) and fed with LGG supplemented feed. After 2 weeks of exposure, the novel tank test was used to evaluate fish behavior, which was analyzed using computer-aided video tracking. LGG alone did not alter swimming behavior of the fish. Ethanol exposure led to robust behavioral effects in the form of reduced anxiety levels, as indicated by increased vertical exploration and more time spent in the upper region of the novel tank. The group exposed to ethanol and treated with LGG behaved similarly to animals exposed to ethanol alone. Taken together, these results show that zebrafish behavior was not altered by LGG per se, as seen in murine models. This was the first study to investigate the effects of a probiotic diet on behavior after a chronic ethanol exposure.

3.
Zebrafish ; 11(4): 371-8, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24987799

ABSTRACT

Zebrafish is a powerful tool in pharmacological research and useful to identify new therapies. Probiotics can offer therapeutic options in alcoholic liver disease. This study was done in two independent experiments: first, we confirmed the intestinal colonization of probiotic Lactobacillus rhamnosus GG (LGG) after ethanol exposure. Second, four groups were performed: control (C), probiotic (P), ethanol (E), and probiotic+ethanol (P+E). Liver histology, hepatocytes morphometry, hepatic and serum lipid quantifications were conducted in second experiment. During 4 weeks, P and P+E groups were fed with LGG supplemented feed; E and C unsupplemented. E and P+E groups received 0.5% of ethanol added into tank water. Zebrafish exposed to ethanol (E group) presented intense liver steatosis after 28 days in contrast to the almost normalized liver histology of P+E group at the same period. Liver morphometry showed a significant enlargement of hepatocytes of E group after 4 weeks (p<0.0001). Serum triglycerides decreased in P+E group compared with C, P (p<0.001), and E (p=0.004), after 14 and 28 days similarly. Serum cholesterol was also decreased by LGG; P group decreased compared with C and E after 14 days (p=0.002 and p=0.007, respectively) and P+E group decreased significantly compared with E and C groups (p<0.0001) after 28 days. Hepatic triglycerides were reduced in P+E group after 28 days compared to E (p=0.006). The persistence of LGG in zebrafish intestines was demonstrated. LGG decreased serum levels of triglycerides and cholesterol and improved hepatic steatosis.


Subject(s)
Ethanol/toxicity , Lacticaseibacillus rhamnosus/metabolism , Probiotics/metabolism , Zebrafish/microbiology , Animals , Female , Intestines/microbiology , Lipid Metabolism/drug effects , Lipids/blood , Liver/drug effects , Male , Zebrafish/blood , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...