Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nanoscale Adv ; 6(17): 4479-4491, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39170975

ABSTRACT

Metal-halide perovskites are recognized as cutting-edge solar energy technology, boasting remarkable absorption capabilities, minimal environmental impact, and cost-effectiveness. This study delves into the structural stability, mechanical stability, and optoelectronic properties of lead-free halide perovskites, specifically XMgI3 (X = Li/Na), by utilizing the CASTEP and WIEN2k software along with the GGA-PBE and Tran-Blaha modified Becke-Johnson (TB-mBJ) exchange-correlation functions to compare their electronic properties. The structural and mechanical stabilities were confirmed by assessing their tolerance factor and formation energy and by evaluating their elastic constants, respectively. Using the TB-mBJ exchange-correlation potential function, the calculated indirect band gap values for LiMgI3 and NaMgI3 were 2.474 and 2.556 eV, respectively. These band gaps are suitable for solar energy harvesting due to their broad optical absorption ranging from infrared to visible light. The partial density of states and the total density of states were determined to investigate the contribution of individual atoms. Consequently, this study can guide researchers focusing on the experimental synthesis of these materials at the laboratory scale for in-depth exploration, particularly in applications such as photovoltaics and various optoelectronic devices.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34835884

ABSTRACT

In this study we prepared potassium-ion batteries (KIBs) displaying high output voltage and, in turn, a high energy density, as replacements for lithium-ion batteries (LIBs). Organic electrode materials featuring void spaces and flexible structures can facilitate the mobility of K+ to enhance the performance of KIBs. We synthesized potassium maleamate (K-MA) from maleamic acid (MA) and applied as an anode material for KIBs and LIBs, with 1 M potassium bis(fluorosulfonyl)imide (KFSI) and 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in a mixture of ethylene carbonate and ethyl methyl carbonate (1:2, v/v) as respective electrolytes. The K-MA_KFSI anode underwent charging/discharging with carbonyl groups at low voltage, due to the K···O bond interaction weaker than Li···O. The K-MA_KFSI and K-MA_LiFSI anode materials delivered a capacity of 172 and 485 mA h g-1 after 200 cycles at 0.1C rate, respectively. K-MA was capable of accepting one K+ in KIB, whereas it could accept two Li+ in a LIB. The superior recoveries performance of K-MA_LiFSI, K-MA_KFSI, and Super P_KFSI at rate of 0.1C were 320, 201, and 105 mA h g-1, respectively. This implies the larger size of K+ can reversibly cycling at high rate.

3.
ACS Appl Mater Interfaces ; 13(39): 46703-46716, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34549937

ABSTRACT

Highly delithiated LiCoO2 has high specific capacity (>200 mAh g-1); however, its degradation behavior causes it to have poor electrochemical performance and thermal instability. The degradation of highly delithiated LiCoO2 is mainly induced by oxygen vacancy migration and weakening of oxygen-related interactions, which result in pitting corrosion and fault formation on the surface. In this research, a coupling agent, namely, 3-aminopropyltriethoxysilane (APTES), was grafted onto the surface of LiCoO2 to form a cross-linking structure. Through the aza-Michael addition reaction, an oligomer formed from barbituric acid and bisphenol a diglycidyl ether diacrylate were reacted with the cross-linking APTES to form an artificial cathode electrolyte interphase (ACEI). The highly delithiated LiCoO2 containing the ACEI had considerably less degradation on the surface of the bulk material caused by oxygen release. The formation of the O1 phase was prevented in high delithiation and high-temperature operations. This research revealed that the ACEI reinforced the Co-O bond, which is crucial in preventing gas evolution and O1 phase formation. In addition, the ACEI prevents direct contact between the electrolyte and highly active surface of LiCoO2, thereby preventing the formation of a thick and high impedance traditional cathode electrolyte interphase. According to the present results, highly delithiated LiCoO2 containing the ACEI exhibited outstanding cycle retention and capacity at 55 °C as well as low heat capacity release in the fully delithiated state. The ACEI considerably protected and maintained the electrochemical performance of highly delithiated LiCoO2, which is suitable for high-energy-density applications, such as electric vehicles and power tools.

SELECTION OF CITATIONS
SEARCH DETAIL