Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 15(38): 7590-7595, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31468038

ABSTRACT

We study the structure of vapor-deposited glasses of five common organic semiconductors as a function of substrate temperature during deposition, using synchrotron X-ray scattering. For deposition at a substrate temperature of ∼0.8Tg (where Tg is the glass transition temperature), we find a generic tendency towards "face-on" packing in glasses of anisotropic molecules. At higher substrate temperature however this generic behavior breaks down; glasses of rod-shaped molecules exhibit a more pronounced tendency for end-on packing. Our study provides guidelines to create face-on and end-on packing motifs in organic glasses, which can promote efficient charge transport in OLED and OFET devices respectively.

2.
J Phys Chem Lett ; 10(13): 3536-3542, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31177780

ABSTRACT

We show that deposition rate substantially affects the anisotropic structure of thin glassy films produced by physical vapor deposition. Itraconazole, a glass-forming liquid crystal, was deposited at rates spanning 3 orders of magnitude over a 25 K range of substrate temperatures, and structure was characterized by ellipsometry and X-ray scattering. Both the molecular orientation and the spacing of the smectic layers obey deposition rate-substrate temperature superposition, such that lowering the deposition rate is equivalent to raising the substrate temperature. We identify two different surface relaxations that are responsible for structural order in the vapor-deposited glasses and find that the process controlling molecular orientation is accelerated by more than 3 orders of magnitude at the surface relative to the bulk. The identification of distinct surface processes responsible for anisotropic structural features in vapor-deposited glasses will enable more precise control over the structure of glassy materials used in organic electronics.

3.
J Phys Chem Lett ; 10(2): 164-170, 2019 Jan 17.
Article in English | MEDLINE | ID: mdl-30582803

ABSTRACT

Anisotropic molecular packing is a key feature that makes glasses prepared by physical vapor deposition (PVD) unique materials, warranting a mechanistic understanding of how a PVD glass attains its structure. To this end, we use X-ray scattering and ellipsometry to characterize the structure of PVD glasses of tris(8-hydroxyquinoline) aluminum (Alq3), a molecule used in organic electronics, and compare our results to simulations of its supercooled liquid. X-ray scattering reveals a tendency for molecular layering in Alq3 glasses that depends upon the substrate temperature during deposition and the deposition rate. Simulations reveal that the Alq3 supercooled liquid, like liquid metals, exhibits surface layering. We propose that the layering in Alq3 glasses observed here as well as the previously reported bulk dipole orientation are inherited from the surface structure of the supercooled liquid. This work significantly advances our understanding of the mechanism governing the formation of anisotropic structure in PVD glasses.

4.
Phys Rev Lett ; 120(5): 055502, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29481153

ABSTRACT

Liquid crystals (LCs) are known to undergo rapid ordering transitions with virtually no hysteresis. We report a remarkable counterexample, itraconazole, where the nematic to smectic transition is avoided at a cooling rate exceeding 20 K/s. The smectic order trapped in a glass is the order reached by the equilibrium liquid before the kinetic arrest of the end-over-end molecular rotation. This is attributed to the fact that smectic ordering requires orientational ordering and suggests a general condition for preparing organic glasses with tunable LC order for electronic applications.

5.
J Chem Phys ; 146(20): 203324, 2017 May 28.
Article in English | MEDLINE | ID: mdl-28571370

ABSTRACT

For a glass-forming liquid, the mechanism by which its surface contour evolves can change from bulk viscous flow at high temperatures to surface diffusion at low temperatures. We show that this mechanistic change can be conveniently detected by the exposure of nano-particles native in the material. Despite its high chemical purity, the often-studied molecular glass indomethacin contains low-concentration particles approximately 100 nm in size and 0.3% in volume fraction. Similar particles are present in polystyrene, another often-used model. In the surface-diffusion regime, particles are gradually exposed in regions vacated by host molecules, for example, the peak of a surface grating and the depletion zone near a surface crystal. In the viscous-flow regime, particle exposure is not observed. The surface contour around an exposed particle widens over time in a self-similar manner as 3 (Bt)1/4, where B is a surface mobility constant and the same constant obtained by surface grating decay. This work suggests that in a binary system composed of slow- and fast-diffusing molecules, slow-diffusing molecules can be stranded in surface regions vacated by fast-diffusing molecules, effectively leading to phase separation.

6.
J Phys Chem B ; 121(10): 2350-2358, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28218856

ABSTRACT

It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 103, comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).

7.
J Chem Phys ; 146(5): 054503, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28178836

ABSTRACT

We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition. Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ∼105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

8.
Soft Matter ; 12(11): 2942-7, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26875700

ABSTRACT

Physical vapor deposition (PVD) has been used to prepare glasses of itraconazole, a smectic A liquid crystal. Glasses were deposited onto subtrates at a range of temperatures (Tsubstrate) near the glass transition temperature (Tg), with Tsubstrate/Tg ranging from 0.70 to 1.02. Infrared spectroscopy and spectroscopic ellipsometry were used to characterize the molecular orientation using the orientational order parameter, Sz, and the birefringence. We find that the molecules in glasses deposited at Tsubstrate = Tg are nearly perpendicular to the substrate (Sz = +0.66) while at lower Tsubstrate molecules are nearly parallel to the substrate (Sz = -0.45). The molecular orientation depends on the temperature of the substrate during preparation, allowing layered samples with differing orientations to be readily prepared. In addition, these vapor-deposited glasses are macroscopically homogeneous and molecularly flat. We interpret the combination of properties obtained for vapor-deposited glasses of itraconazole to result from a process where molecular orientation is determined by the structure and dynamics at the free surface of the glass during deposition. Vapor deposition of liquid crystals is likely a general approach for the preparation of highly anisotropic glasses with tunable molecular orientation for use in organic electronics and optoelectronics.


Subject(s)
Glass/chemistry , Liquid Crystals/chemistry , Anisotropy
9.
Angew Chem Int Ed Engl ; 53(3): 672-99, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24382661

ABSTRACT

Crystals of a variety of substances including elements, minerals, simple salts, organic molecular crystals, and high polymers forgo long-range translational order by twisting and bending as they grow. These deviations have been observed in crystals ranging in size from nanometers to centimeters. How and why so many materials choose dramatic non-crystallographic distortions is analyzed, with an emphasis on crystal chemistries that give rise to stresses operating either on surfaces of crystallites or within the bulk.

SELECTION OF CITATIONS
SEARCH DETAIL
...