Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 642(1-2): 27-36, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19427456

ABSTRACT

On-line measurements from first-order instruments such as spectrometers may be compromised by instrumental, process and operational drifts that are not seen during off-line calibration. This can render the calibration model unsuitable for prediction of key components such as analyte concentrations. In this work, infrequently available on-line reference measurements of the analytes of interest are used for drift correction. The drift-correction methods that include drift in the calibration set are referred to as implicit correction methods (ICM), while explicit correction methods (ECM) model the drift based on the reference measurements and make the calibration model orthogonal or invariant to the space spanned by the drift. Under some working assumptions such as linearity between the concentrations and the spectra, necessary and sufficient conditions for correct prediction using ICM and ECM are proposed. These so-called space-inclusion conditions can be checked on-line by monitoring the Q-statistic. Hence, violation of these conditions implies the violation of one or more of the working assumptions, which can be used, e.g. to infer the need for new reference measurements. These conditions are also valid for rank-deficient calibration data, i.e. when the concentrations of the various species are linearly dependent. A constraint on the kernel used in ECM follows from the space-inclusion condition. This kernel does not estimate the drift itself but leads to an unbiased estimate of the drift space. In a noise-free environment, it is shown that ICM and ECM are equivalent. However, in the presence of noise, a Monte Carlo simulation shows that ECM performs slightly better than ICM. A paired t-test indicates that this difference is statistically significant. When applied to experimental fermentation data, ICM and ECM lead to a significant reduction in prediction error for the concentrations of five metabolites predicted from infrared spectra.

2.
Appl Spectrosc ; 61(5): 507-13, 2007 May.
Article in English | MEDLINE | ID: mdl-17555620

ABSTRACT

Spectrometers are enjoying increasing popularity in bioprocess monitoring due to their non-invasiveness and in situ sterilizability. Their on-line applicability and high measurement frequency create an interesting opportunity for process control and optimization tasks. However, building and maintaining a robust calibration model for the on-line estimation of key variables of interest (e.g., concentrations of selected metabolites) is time consuming and costly. One of the main drawbacks of using infrared (IR) spectrometers on-line is that IR spectra are compromised by both long-term drifts and short-term sudden shifts due to instrumental effects or process shifts that might be unseen during calibration. The effect of instrumental drifts can normally be reduced by referencing the measurements against a background solution, but this option is difficult to implement for single-beam instruments due to sterility issues. In this work, in order to maintain the robustness of calibration models for single-beam IR and to increase resistance to process and instrumental drifts, planned spikes of small amounts of analytes were injected periodically into the monitored medium. The corresponding measured difference spectra were scaled-up and used as reference measurements for updating the calibration model in real time based on dynamic orthogonal projection (DOP). Applying this technique led to a noticeable decrease in the standard error of prediction of metabolite concentrations monitored during an anaerobic fermentation of the yeast Saccharomyces cerevisiae.


Subject(s)
Algorithms , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Spectrophotometry, Infrared/instrumentation , Spectrophotometry, Infrared/standards , Calibration , Computer Simulation , Flow Injection Analysis/methods , Flow Injection Analysis/standards , Models, Biological , Models, Chemical , Sensitivity and Specificity , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...