Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 12(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36556426

ABSTRACT

Priming is used as a method to improve plant growth and alleviate the detrimental effects of pathogens. The present study was conducted to evaluate the effects of different priming methods in the context of resistance to Aspergillus niger in wheat (Triticum aestivum L.). Here, we show that different priming treatments­viz., hydropriming, osmotic priming, halopriming, and hormonal priming techniques can induce disease resistance by improving the biochemical contents of wheat, including chlorophyll, protein, proline, and sugar. In addition, physiological parameters­such as root length, shoot length, fresh and dry root/shoot ratios, and relative water content were positively affected by these priming methods. In essence, hydropriming and osmotic priming treatments were found to be more potent for enhancing wheat biochemical contents, along with all the physiological parameters, and for reducing disease severity. Hydropriming and osmotic priming significantly decreased disease severity, by 70.59−75.00% and 64.71−88.33%, respectively. RT-PCR and quantitative real-time PCR analyses of potentially important pathogenesis-related (PR)-protein genes (Thaumatin-like protein (TLP), chitinase, and ß-1,3-glucanase) in primed plants were evaluated: ß-1,3-glucanase was most highly expressed in all primed plants; Chitinase and TLP exhibited higher expression in hormonal-, halo-, osmotic-, and hydro-primed plants, respectively. These results suggest that the higher expression of ß-1,3-glucanase, TLP, and chitinase after hydropriming and osmotic priming may increase disease resistance in wheat. Our study demonstrates the greater potential of hydropriming and osmotic priming for alleviating stress caused by A. niger inoculation, and enhancing resistance to it, in addition to significantly improving plant growth. Thus, these priming methods could be beneficial for better plant growth and disease resistance in other plants.

2.
New Phytol ; 222(3): 1474-1492, 2019 05.
Article in English | MEDLINE | ID: mdl-30663769

ABSTRACT

Biotrophic fungal plant pathogens can balance their virulence and form intricate relationships with their hosts. Sometimes, this leads to systemic host colonization over long time scales without macroscopic symptoms. However, how plant-pathogenic endophytes manage to establish their sustained systemic infection remains largely unknown. Here, we present a genomic and transcriptomic analysis of Thecaphora thlaspeos. This relative of the well studied grass smut Ustilago maydis is the only smut fungus adapted to Brassicaceae hosts. Its ability to overwinter with perennial hosts and its systemic plant infection including roots are unique characteristics among smut fungi. The T. thlaspeos genome was assembled to the chromosome level. It is a typical smut genome in terms of size and genome characteristics. In silico prediction of candidate effector genes revealed common smut effector proteins and unique members. For three candidates, we have functionally demonstrated effector activity. One of these, TtTue1, suggests a potential link to cold acclimation. On the plant side, we found evidence for a typical immune response as it is present in other infection systems, despite the absence of any macroscopic symptoms during infection. Our findings suggest that T. thlaspeos distinctly balances its virulence during biotrophic growth ultimately allowing for long-lived infection of its perennial hosts.


Subject(s)
Basidiomycota/genetics , Brassicaceae/microbiology , Fungal Proteins/metabolism , Genome, Fungal , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Transcriptome/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/microbiology , Basidiomycota/pathogenicity , Brassicaceae/immunology , Conserved Sequence , Fungal Proteins/chemistry , Gene Expression Regulation, Fungal , Gene Ontology , Molecular Sequence Annotation , Phylogeny , Plants, Genetically Modified , Salicylic Acid/metabolism , Species Specificity , Synteny/genetics , Zea mays/microbiology
3.
Plant Physiol Biochem ; 123: 149-159, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29245030

ABSTRACT

Plants are prone to a number of pathogens and abiotic stresses that cause various disorders. However, plants possess a defense mechanism to cope with these stresses. The osmotin protein belongs to the PR-5 family of Pathogenesis-related (PR) proteins, which are produced in response to diseases caused by various biotic and abiotic stresses. Osmotin uses a signal transduction pathway to inhibit the activity of defensive cell wall barriers and increases its own cytotoxic efficiency. However, in response to cytotoxic effects, this pathway stimulates a mitogen-activated protein kinase (MAPK) cascade that triggers changes in the cell wall and enables osmotin's entrance into the plasma membrane. This mechanism involves cell wall binding and membrane perturbation, although the complete mechanism of osmotin activity has not been fully elucidated. Osmotin possesses an acidic cleft that is responsible for communication with its receptor in the plasma membrane of fungi. Osmotin is also involved in the initiation of apoptosis and programmed cell death, whereas its overexpression causes the accumulation of proline in transgenic plants. A higher concentration of osmotin can cause the lysis of hyphae tips. This review highlights the role of osmotin protein in the plant defense mechanism and its mode of action against numerous pathogens in wild and transgenic plants.


Subject(s)
Disease Resistance/physiology , Plant Diseases , Plant Proteins , Plants , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Plants/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...