Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vector Borne Zoonotic Dis ; 23(1): 18-28, 2023 01.
Article in English | MEDLINE | ID: mdl-36633561

ABSTRACT

Background: Chagas disease is one of the world's most neglected tropical diseases, infecting over six million people across the Americas. The hemoparasite Trypanosoma cruzi is the etiological agent for the disease, circulating in domestic, peridomestic, and sylvatic transmission cycles that are maintained by triatomine vectors and a diversity of wild and synanthropic hosts. Public health and wildlife management interventions targeting the interruption of T. cruzi transmission rely on an understanding of the dynamics driving the ecology of this zoonotic pathogen. One wildlife host that purportedly plays a role in the transmission of Chagas disease within the southern United States is the striped skunk (Mephitis mephitis), although infection prevalence in this species is poorly understood. Materials and Methods: To this end, we conducted a PCR-based surveillance of T. cruzi in 235 wild skunks, representing 4 species, across 76 counties and 10 ecoregions in Texas, United States, along with an evaluation of risk factors associated with the infection. Results: We recovered an overall T. cruzi prevalence of 17.9% for all mephitid taxa aggregated, ranging between 6.7% for plains spotted skunks (Spilogale putorius interrupta) and 42.9% for western spotted skunks (Spilogale gracilis). We report the first cases of T. cruzi infection in plains spotted and American hog-nosed skunks (Conepatus leuconotus), of important note for conservation medicine since populations of both species are declining within Texas. Although not statistically significant, we also detected trends for juveniles to exhibit greater infection risk than adults and for differential sex biases in T. cruzi prevalence between taxa, which align with variations in species-specific seasonal activity patterns. No geographic or taxonomic risk factors were identified. Conclusion: Our study contributed key data for population viability analyses and epidemiologic models in addition to providing a baseline for future T. cruzi surveillance among skunks and other wildlife species.


Subject(s)
Animals, Wild , Chagas Disease , Mephitidae , Animals , Animals, Wild/parasitology , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Prevalence , Texas/epidemiology , Trypanosoma cruzi
2.
Pathogens ; 10(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34451504

ABSTRACT

Blood filter paper strips are cost-effective materials used to store body fluid specimens under challenging field conditions, extending the reach of zoonotic pathogen surveillance and research. We describe an optimized procedure for the extraction of parasite DNA from whole blood (WB) stored on Type I Advantec Nobuto strips from both experimentally spiked and field-collected specimens from canine and skunks, respectively. When comparing two commercial kits for extraction, Qiagen's DNeasy Blood & Tissue Kit performed best for the detection of parasite DNA by PCR from Trypanosoma cruzi-spiked canine WB samples on Nobuto strips. To further optimize recovery of ß-actin from field-collected skunk WB archived on Nobuto strips, we modified the extraction procedures for the Qiagen kit with a 90 °C incubation step and extended incubation post-addition of proteinase K, a method subsequently employed to identify a T. cruzi infection in one of the skunks. Using this optimized extraction method can efficaciously increase the accuracy and precision of future molecular epidemiologic investigations targeting neglected tropical diseases in field-collected WB specimens on filter strips.

3.
Sci Rep ; 11(1): 8846, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986320

ABSTRACT

Evidence for the earliest invasion of the marine realm by mammals was previously restricted to Eocene (48.6-37.8 Ma) skeletal remains. We report incontrovertible ichnofossil evidence for brackish-water habitat use by at least two mammalian species in southern Wyoming during the late Paleocene (58 Ma). These are the first Paleocene mammal trackways recorded in the United States and only the fourth documented in the world. Multiple tracks preserved in restricted marine deposits represent animals repeatedly walking across submerged to partially emergent tidal flats. Hundreds of tracks are preserved in planform and cross-sectional exposure within five horizons along a 1032 m tracksite. Four prints exhibit five clear toe imprints, while two others distinctly display four toes. Some tracks penetrate beds populated by dwelling traces of marine bivalves and polychaetes in the upper layers and sea anemones at the base. Candidates for the five-toed tracemakers are pantodonts such as Titanoides, Barylambda, and Coryphodon, which have been recovered from late Paleocene strata throughout western North America. The four-toed tracks provide the earliest evidence of previously-undescribed large artiodactyls and/or tapiroids, mutually supporting recent molecular phylogenetic studies that place the origin of Cetartiodactyla near the Cretaceous-Paleogene boundary (~ 67.7 Ma). Collectively, these trackways irrefutably demonstrate the utility of ichnological data in reconstructing the evolutionary history and adaptive behaviors of extinct taxa beyond the evidence provided by body fossils alone.


Subject(s)
Biological Evolution , Ecosystem , Fossils , Mammals , Animals , Oceans and Seas , Paleontology , Phylogeny
4.
Int J Mol Sci ; 20(8)2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31010160

ABSTRACT

West Nile virus (WNV), a mosquito-borne arbovirus, remains a major global health concern. In this study, we optimized PCR methods then assessed serially-collected whole blood (WB), urine (UR), saliva, and semen specimens from a large cohort of WNV-positive participants to evaluate the natural history of infection and persistent shedding of WNV RNA. Viral RNA extraction protocols for frozen WB and UR specimens were optimized and validated through spiking experiments to maximize recovery of viral RNA from archived specimens and to assess the degradation of WNV RNA in stored UR specimens. The resultant procedures were used in conjunction with PCR detection to identify WNV-positive specimens and to quantify their viral loads. A total of 59 of 352 WB, 10 of 38 UR, and 2 of 34 saliva specimens tested positive for WNV RNA. Although a single semen specimen was positive 22 days post onset, we could not definitively confirm the presence of WNV RNA in the remaining specimens. WNV RNA-positive UR specimens exhibited profound loss of viral RNA during storage, highlighting the need for optimal preservation pre-storage. This study provides optimized methods for WNV RNA detection among different fluid types and offers alternative options for diagnostic testing during the acute stages of WNV.


Subject(s)
Body Fluids/virology , Polymerase Chain Reaction/methods , West Nile Fever/virology , West Nile virus/isolation & purification , Cohort Studies , Humans , Male , RNA, Viral/isolation & purification , Saliva/virology , Semen/virology , West Nile Fever/blood , West Nile Fever/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...