Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 11(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871041

ABSTRACT

The design of nanoparticle delivery materials possessing biological activities is an attractive strategy for the development of various therapies. In this study, 11 cationic amphiphilic 4-(N-alkylpyridinium)-1,4-dihydropyridine (1,4-DHP) derivatives differing in alkyl chain length and propargyl moiety/ties number and position were selected for the study of their self-assembling properties, evaluation of their cytotoxicity in vitro and toxicity on microorganisms, and the characterisation of their interaction with phospholipids. These lipid-like 1,4-DHPs have been earlier proposed as promising nanocarriers for DNA delivery. We have revealed that the mean diameter of freshly prepared nanoparticles varied from 58 to 513 nm, depending upon the 4-(N-alkylpyridinium)-1,4-DHP structure. Additionally, we have confirmed that only nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3 and 6, and by 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 were stable after two weeks of storage. The nanoparticles of these compounds were found to be homogenous in size distribution, ranging from 124 to 221 nm. The polydispersity index (PDI) values of 1,4-DHPs samples 3, 6, 10, and 11 were in the range of 0.10 to 0.37. We also demonstrated that the nanoparticles formed by 4-(N-dodecylpyridinium)-1,4-DHP derivatives 3, 6, and 9, and 4-(N-hexadecylpyridinium)-1,4-DHP derivatives 10 and 11 had zeta-potentials from +26.07 mV (compound 6) to +62.80 mV (compound 11), indicating a strongly positive surface charge and confirming the relative electrostatic stability of these nanoparticle solutions. Transmission electron microscopy (TEM) images of nanoaggregates formed by 1,4-DHPs 3 and 11 confirmed liposome-like structures with diameters around 70 to 170 nm. The critical aggregation concentration (CAC) value interval for 4-(N-alkylpyridinium)-1,4-DHP was from 7.6 µM (compound 11) to 43.3 µM (compound 6). The tested 4-(N-alkylpyridinium)-1,4-DHP derivatives were able to quench the fluorescence of the binary 1,6-diphenyl-1,3,5-hexatriene (DPH)-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) system, demonstrating hydrophobic interactions of 1,4-DHPs with phospholipids. Thus, 4-(N-dodecylpyridinium)-1,4-DHP derivative 3 quenched the fluorescence of the DPH⁻DPPC system more efficiently than the other 4-(N-alkylpyridinium)-1,4-DHP derivatives. Likewise the compound 3, also 4-(N-dodecylpyridinium)-1,4-DHP derivative 9 interacted with the phospholipids. Moreover, we have established that increasing the length of the alkyl chain at the quaternised nitrogen of the 4-(N-alkylpyridinium)-1,4-DHP molecule or the introduction of propargyl moieties in the 1,4-DHP molecule significantly influences the cytotoxicity on HT-1080 (human fibrosarcoma) and MH-22A (mouse hepatocarcinoma) cell lines, as well as the estimated basal cytotoxicity. Additionally, it was demonstrated that the toxicity of the 4-(N-alkylpyridinium)-1,4-DHP derivatives on the Gram-positive and Gram-negative bacteria species and eukaryotic microorganism depended on the presence of the alkyl chain length at the N-alkyl pyridinium moiety, as well as the number of propargyl groups. These lipid-like compounds may be proposed for the further development of drug formulations to be used in cancer treatment.

2.
Chem Asian J ; 11(13): 1929-38, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27146245

ABSTRACT

The cyclization of arylalkynes under selenobromination conditions, combined with an acid-induced 3,2-aryl shift, was elaborated as a general synthetic pathway for the preparation of polyhydroxy-2- and -3-arylbenzo[b]selenophenes from the same starting materials. The redox properties, free-radical-scavenging ability, and cytotoxicity against malignant cell lines (MCF-7, MDA-MB-231, HepG2, and 4T1) of the synthesized compounds were explored, and the obtained results were used to consider the structure-activity relationships (SARs) in these compounds. Consequently, the structural features that were responsible for the highly potent peroxyl-radical-scavenging activity were established.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antioxidants/chemical synthesis , Benzene Derivatives/chemical synthesis , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclization , Humans , Neoplasms/drug therapy , Organoselenium Compounds/chemical synthesis , Oxidation-Reduction/drug effects
3.
Toxicol Rep ; 2: 377-383, 2015.
Article in English | MEDLINE | ID: mdl-28962371

ABSTRACT

Addition of DMPC considerably inhibits the degradation of Carmofur in neutral phosphate buffer solutions and this drug becomes less influenced by pH. Carmofur stabilization at neutral pH caused by DMPC addition for in vitro studies was characterized and monitored by 1H NMR. Antiproliferative activity studies on various tumor cell lines showed considerable increase of Carmofur ability to prevent tumor cell growth, when it is added as a mixture with DMPC. This technique opens a way for Carmofur drug delivery in neutral and basic media.

4.
J Sci Food Agric ; 95(3): 560-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24917557

ABSTRACT

BACKGROUND: The health-promoting properties of apples are directly related to the biologically active compounds that they contain, such as polyphenols. The objective of this study was to prepare a low-sugar, fibre- and phlorizin-enriched powder from unripe apples and to gain insight regarding its anti-hyperglycaemic activity in healthy volunteers. RESULTS: The unripe apples (Malus domestica Borkh.) were collected 30 days after the full bloom day; blanched and pressed to obtain apple pomace which was then processed with a food cutter, oven-dried and milled to prepare apple powder. The concentrations of total sugars, water-soluble pectin and phlorizin in the apple preparation were 153.44 ± 2.46, 27.73 ± 0.51 and 12.61 ± 0.15 g kg(-1), respectively. Acute ingestion of the apple preparation improved glucose metabolism in the oral glucose tolerance test (OGTT) in six healthy volunteers by reducing the postprandial glucose response at 15 to 30 min by approximately two-fold (P < 0.05) and by increasing urinary glucose excretion during the 2- to 4-h interval of the OGTT by five-fold (P < 0.05). CONCLUSION: The results obtained indicate that the dried and powdered pomace of unripe apples can be used as a health-promoting natural product for the reduction of postprandial glycaemia and to improve the health of patients with diabetes.


Subject(s)
Blood Glucose/metabolism , Dietary Sucrose/metabolism , Fruit/chemistry , Hypoglycemic Agents/pharmacology , Malus/chemistry , Phlorhizin/pharmacology , Plant Extracts/pharmacology , Dietary Fiber/analysis , Dietary Fiber/pharmacology , Dietary Sucrose/analysis , Female , Glucose Tolerance Test , Healthy Volunteers , Humans , Hyperglycemia/blood , Hyperglycemia/drug therapy , Hypoglycemic Agents/analysis , Pectins/analysis , Pectins/pharmacology , Phlorhizin/analysis , Plant Extracts/chemistry , Polyphenols/pharmacology , Postprandial Period , Powders , Reference Values
5.
Eur J Med Chem ; 87: 471-83, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25282270

ABSTRACT

Synthetic protocols for the preparation of selenium analogues of raloxifene were elaborated. General aim of the current research is to improve the positive impact of selenium atom introduction in drug design. Antiproliferative activity on CCL-8 (mouse sarcoma), MDA-MB-435s (human melanoma), MES-SA (human uterus sarcoma), MCF-7 (human breast adenocarcinoma), HT-1080 (human fibrosarcoma), MG-22A (mouse hepatoma) tumor cell lines, and normal cell line NIH 3T3 (mouse fibroblasts) was studied. Influence of aminoethoxy "tail" and benzoyl group position on SAR was discussed. Results of in vivo studies on BALB/c female mice with 4T1 cell induced breast cancer model showed that selenium analogue of raloxifene is able to suppress estrogen-depending tumor growth.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Raloxifene Hydrochloride/analogs & derivatives , Selenium/chemistry , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Female , Humans , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred BALB C , NIH 3T3 Cells , Raloxifene Hydrochloride/pharmacology , Spectrometry, Mass, Electrospray Ionization
6.
Magnes Res ; 27(1): 16-24, 2014.
Article in English | MEDLINE | ID: mdl-24827813

ABSTRACT

The administration of magnesium supplements and nitrates/nitrites decreases arterial blood pressure and attenuates the development of hypertension-induced complications. This study was performed to examine the effects of treatment with magnesium nitrate on the development of hypertension and its complications in spontaneously hypertensive (SHR) rats. Male SHR rats with persistent hypertension at the age of 12-13 weeks were allocated to two groups according to their arterial blood pressure. Rats from the control group received purified water, while the experimental animals from the second group received magnesium nitrate dissolved in purified water at a dose of 50 mg/kg. After four weeks of treatment, blood pressure was measured, the anatomical and functional parameters of the heart were recorded using an ultrasonograph, vascular reactivity was assayed in organ bath experiments and the cardioprotective effects of magnesium nitrate administration was assayed in an ex vivo experimental heart infarction model. Treatment with magnesium nitrate significantly increased the nitrate concentration in the plasma (from 62 ± 8 µmol/l to 111 ± 8 µmol/L), and attenuated the increase in the arterial blood pressure. In the control and magnesium nitrate groups, the blood pressure rose by 21 ± 3 mmHg and 6 ± 4 mmHg, respectively. The administration of magnesium nitrate had no effect on the altered vasoreactivity, heart function or the size of the heart infarction. In conclusion, our results demonstrate that magnesium nitrate effectively attenuates the rise in arterial blood pressure. However, a longer period of administration or earlier onset of treatment might be needed to delay the development of complications due to hypertension.


Subject(s)
Blood Pressure/drug effects , Magnesium Compounds/pharmacology , Nitrates/pharmacology , Animals , Magnesium Compounds/blood , Male , Nitrates/blood , Rats , Rats, Inbred SHR
SELECTION OF CITATIONS
SEARCH DETAIL
...