Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1378, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228693

ABSTRACT

A two-step strategy combining assisted benchmark testing (entry controls) and External Quality Assessments (EQAs) with blinded simulated clinical specimens to enhance and maintain the quality of nucleic acid amplification testing was developed. This strategy was successfully applied to 71 diagnostic laboratories in The Netherlands when upscaling the national diagnostic capacity during the SARS-CoV-2 pandemic. The availability of benchmark testing in combination with advice for improvement substantially enhanced the quality of the laboratory testing procedures for SARS-CoV-2 detection. The three subsequent EQA rounds demonstrated high quality testing with regard to specificity (99.6% correctly identified) and sensitivity (93.3% correctly identified). Even with the implementation of novel assays, changing workflows using diverse equipment and a high degree of assay heterogeneity, the overall high quality was maintained using this two-step strategy. We show that in contrast to the limited value of Cq value for absolute proxies of viral load, these Cq values can, in combination with metadata on strategies and techniques, provide valuable information for laboratories to improve their procedures. In conclusion, our two-step strategy (preparation phase followed by a series of EQAs) is a rapid and flexible system capable of scaling, improving, and maintaining high quality diagnostics even in a rapidly evolving (e.g. pandemic) situation.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Laboratories , Clinical Laboratory Techniques/methods , COVID-19 Testing , Benchmarking , Pathology, Molecular , Sensitivity and Specificity
2.
PLoS One ; 12(3): e0173470, 2017.
Article in English | MEDLINE | ID: mdl-28278281

ABSTRACT

Avian influenza viruses from wild birds can cause outbreaks in poultry, and occasionally infect humans upon exposure to infected poultry. Identification and characterization of viral reservoirs and transmission routes is important to develop strategies that prevent infection of poultry, and subsequently virus transmission between poultry holdings and to humans. Based on spatial, temporal and phylogenetic analyses of data generated as part of intense and large-scale influenza surveillance programs in wild birds and poultry in the Netherlands from 2006 to 2011, we demonstrate that LPAIV subtype distribution differed between wild birds and poultry, suggestive of host-range restrictions. LPAIV isolated from Dutch poultry were genetically most closely related to LPAIV isolated from wild birds in the Netherlands or occasionally elsewhere in Western Europe. However, a relatively long time interval was observed between the isolations of related viruses from wild birds and poultry. Spatial analyses provided evidence for mallards (Anas platyrhynchos) being more abundant near primary infected poultry farms. Detailed year-round investigation of virus prevalence and wild bird species distribution and behavior near poultry farms should be used to improve risk assessment in relation to avian influenza virus introduction and retarget avian influenza surveillance programs.


Subject(s)
Animals, Wild/virology , Epidemiological Monitoring/veterinary , Influenza A virus/isolation & purification , Influenza in Birds/virology , Poultry/virology , Animals , Environment , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/enzymology , Influenza A virus/genetics , Influenza in Birds/epidemiology , Neuraminidase/genetics , Risk Factors
3.
J Clin Microbiol ; 47(3): 666-73, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19109483

ABSTRACT

Influenza A virus surveillance studies of wild bird populations are essential to improving our understanding of the role of wild birds in the ecology of low-pathogenic avian influenza viruses and their potential contribution to the spread of H5N1 highly pathogenic avian influenza viruses. Whereas the primary results of such surveillance programs have been communicated extensively, practical considerations and technical implementation options generally receive little attention. In the present study, the data obtained from 39,490 samples were used to compare the impacts of variables such as the sampling procedure, storage and transport conditions, and the choice of molecular and classical diagnostic tests on the outcome of the results. Molecular diagnostic tests allowed estimation of the virus load in samples, which has implications for the ability to isolate virus. Virus isolation in embryonated eggs was more sensitive than virus isolation in cell cultures. Storage and transport conditions had less of an impact on diagnostics by the use of molecular tests than by the use of classical approaches. These findings indicate that molecular diagnostic tests are more sensitive and more reliable than classical tests. In addition, molecular diagnostic tests facilitated analyses in real time and allowed the discrimination of H5 influenza viruses with low and high pathogenicities without the need for virus isolation. Critical assessment of the methods used in large surveillance studies like this will facilitate comparison of the results between studies. Moreover, the lessons learned from current large-scale influenza A virus surveillance activities could be valuable for other pathogen surveillance programs in the future.


Subject(s)
Influenza A virus/isolation & purification , Influenza in Birds/diagnosis , Influenza in Birds/virology , Molecular Diagnostic Techniques/methods , Animals , Birds , Cell Line , Chick Embryo , Influenza A virus/genetics , Influenza in Birds/epidemiology , Sensitivity and Specificity , Specimen Handling/methods , Virus Cultivation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...