Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Nat Chem ; 15(11): 1484-1485, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37907608
2.
Org Lett ; 25(35): 6560-6565, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37615672

ABSTRACT

Hypervalent fluoro-λ3-iodanes have emerged as versatile reagents that provide unusual fluorination selectivities under mild reaction conditions. Here, we report on adding a semipinacol rearrangement, fluorination, and aryl migration cascade reaction of styrene derivatives. Thus, various cyclopentanones became accessible in up to 96% yield, all bearing tertiary C,F-carbon centers adjacent to the ketone group. Such fluorinated structural motifs are difficult to build with previously established methods. Preliminary experiments on enantioselective processes validated that asymmetric transformations are likewise feasible.

3.
Int J Mol Sci ; 24(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37175925

ABSTRACT

This short review reports the surprising phenomenon of nuclear hyperpolarization occurring in chemical reactions, which is called CIDNP (chemically induced dynamic nuclear polarization) or photo-CIDNP if the chemical reaction is light-driven. The phenomenon occurs in both liquid and solid-state, and electron transfer systems, often carrying flavins as electron acceptors, are involved. Here, we explain the physical and chemical properties of flavins, their occurrence in spin-correlated radical pairs (SCRP) and the possible involvement of flavin-carrying SCRPs in animal magneto-reception at earth's magnetic field.


Subject(s)
Flavoproteins , Magnetic Fields , Animals , Electron Transport , Flavins/chemistry
4.
Chem Sci ; 14(14): 3907-3912, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37035703

ABSTRACT

While bromo- and iodocyclizations have recently been successfully implemented, the challenging chlorocyclizations have been scantly investigated. We present a selective and generally applicable concept of chlorination-induced polyene cyclization by utilizing HFIP-chloroiodane networks mimicking terpene cyclases. A manifold of different alkenes was converted with excellent selectivities (up to d.r. >95 : 5). The cyclization platform was even extended to several structurally challenging terpenes and terpenoid carbon frameworks.

5.
Nat Commun ; 14(1): 813, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36781877

ABSTRACT

Terpene cyclases catalyze one of the most powerful transformations with respect to efficiency and selectivity in natural product (bio)synthesis. In such polyene cyclizations, structurally highly complex carbon scaffolds are built by the controlled ring closure of linear polyenes. Thereby, multiple C,C bonds and stereocenters are simultaneously created with high precision. Structural pre-organization of the substrate carbon chain inside the active center of the enzyme is responsible for the product- and stereoselectivity of this cyclization. Here, we show that in-situ formed fluorinated-alcohol-amine supramolecular clusters serve as artificial cyclases by triggering enzyme-like reactivity and selectivity by controlling substrate conformation in solution. Because of the dynamic nature of these supramolecular assemblies, a broad range of terpenes can be produced diastereoselectively. Mechanistic studies reveal a finely balanced interplay of fluorinated solvent, catalyst, and substrate as key to establishing nature's concept of a shape-selective polyene cyclization in organic synthesis.

6.
Molecules ; 27(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35744855

ABSTRACT

Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62-17.00 µg/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditiselegans at concentrations up to 50 µg/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 µg/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br2, respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski's "rule of five", with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization.


Subject(s)
Neoplasms , Prodigiosin , Animals , Apoptosis , Prodigiosin/metabolism , Prodigiosin/pharmacology , Serratia marcescens/metabolism , Zebrafish/metabolism
7.
Nat Chem Biol ; 18(6): 652-658, 2022 06.
Article in English | MEDLINE | ID: mdl-35618928

ABSTRACT

The γ-butyrolactone motif is found in many natural signaling molecules and other specialized metabolites. A prominent example is the potent aquatic phytotoxin cyanobacterin, which has a highly functionalized γ-butyrolactone core structure. The enzymatic machinery that assembles cyanobacterin and structurally related natural products (herein termed furanolides) has remained elusive for decades. Here, we elucidate the biosynthetic process of furanolide assembly. The cyanobacterin biosynthetic gene cluster was identified by targeted bioinformatic screening and validated by heterologous expression in Escherichia coli. Full functional evaluation of the recombinant key enzymes in vivo and in vitro, individually and in concert, provided in-depth mechanistic insights into a streamlined C-C bond-forming cascade that involves installation of compatible reactivity at seemingly unreactive Cα positions of amino acid precursors. Our work extends the biosynthetic and biocatalytic toolbox for γ-butyrolactone formation, provides a general paradigm for furanolide biosynthesis and sets the stage for their targeted discovery, biosynthetic engineering and enzymatic synthesis.


Subject(s)
4-Butyrolactone , Biological Products , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Biological Products/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Multigene Family
8.
J Am Chem Soc ; 144(23): 10353-10360, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35640072

ABSTRACT

We report an approach for the online coupling of digital microfluidics (DMF) with mass spectrometry (MS) using a chip-integrated microspray hole (µSH). The technique uses an adapted electrostatic spray ionization (ESTASI) method to spray a portion of a sample droplet through a microhole in the cover plate, allowing its chemical content to be analyzed by MS. This eliminates the need for chip disassembly or the introduction of capillary emitters for MS analysis, as required by state-of-the-art. For the first time, this allows the essential advantage of a DMF device─free droplet movement─to be retained during MS analysis. The broad applicability of the developed seamless coupling of DMF and mass spectrometry was successfully applied to the study of various on-chip organic syntheses as well as protein and peptide analysis. In the case of a Hantzsch synthesis, we were able to show that the method is very well suited for monitoring even rapid chemical reactions that are completed in a few seconds. In addition, the strength of the low resource consumption in such on-chip microsyntheses was demonstrated by the example of enzymatic brominations, for which only a minute amount of a special haloperoxidase is required in the droplet. The unique selling point of this approach is that the analyzed droplet remains completely movable after the MS measurement and is available for subsequent on-DMF chip processes. This is illustrated here for the example of MS analysis of the starting materials in the corresponding droplets before they are combined to investigate the reaction progress by DMF-MS further. This technology enables the ongoing and almost unlimited tracking of multistep chemical processes in a DMF chip and offers exciting prospects for transforming digital microfluidics into automated synthesis platforms.


Subject(s)
Microfluidics , Proteins , Mass Spectrometry , Microfluidics/methods
9.
Bioorg Med Chem ; 30: 115965, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33373819

ABSTRACT

A bioisosteric carboxamide - sulfonamide replacement explored during the optimization of an insecticide lead compound led to the surprising discovery of a formerly unknown subclass of the Carboxylic Acid Amide (CAA) fungicides, which is the very first CAA fungicide group without a carboxamide function. In this paper we present invention pathway, racemic and stereoselective synthesis routes, structure-activity relationship studies as well as resistance profile of this novel family of fungicides.


Subject(s)
Fungicides, Industrial/pharmacology , Nitriles/pharmacology , Oomycetes/drug effects , Sulfonamides/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Fungal/drug effects , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Microbial Sensitivity Tests , Molecular Structure , Nitriles/chemical synthesis , Nitriles/chemistry , Plant Diseases/prevention & control , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
10.
Chemistry ; 27(14): 4561-4566, 2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33300642

ABSTRACT

Conventional histology is a destructive technique based on the evaluation of 2D slices of a 3D biopsy. By using 3D X-ray histology these obstacles can be overcome, but their application is still restricted due to the inherently low attenuation properties of soft tissue. In order to solve this problem, the tissue can be stained before X-ray computed tomography imaging (CT) to enhance the soft tissue X-ray contrast. Evaluation of brominated fluorescein salts revealed a mutual influence of the number of bromine atoms and the cations applied on the achieved contrast enhancement. The dibromo fluorescein barium salt turned out to be the ideal X-ray contrast agent, allowing for 3D imaging and subsequent complementing counterstaining applying standard histological techniques.


Subject(s)
Contrast Media , Imaging, Three-Dimensional , Eosine Yellowish-(YS) , Sodium Chloride , X-Ray Microtomography
11.
J Am Chem Soc ; 142(49): 20577-20582, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33231441

ABSTRACT

Reversing the polarity in molecules is a versatile tool for expanding the boundaries of structural space. Despite a manifold of different umpolung methods available today, overcoming the inherent reactivity still remains a constant challenge in organic chemistry. The oxidative α-functionalization of ketones by external nucleophiles constitute such an example. Herein, we present a hypervalent F-iodane mediated umpolung of pyridyl ketones triggered by Lewis base/Lewis acid noncovalent interactions. A wide variety of external nucleophiles are introduced with high regioselectivity applying this substrate-directing concept.

12.
Science ; 366(6472): 1454, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31857472

Subject(s)
Peptides , Catalysis
13.
Chembiochem ; 20(15): 1871-1897, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30864191

ABSTRACT

Enzymes catalyze a plethora of highly specific transformations under mild and environmentally benign reaction conditions. Their fascinating performances attest to high synthetic potential that is often hampered by operational obstacles such as in vitro cofactor supply and regeneration. Exploiting light and combining it with biocatalysis not only helps in overcoming these drawbacks, but the fruitful liaison of these two fields of "green chemistry" also offers opportunities to unlock new synthetic reactivities. In this review we provide an overview of the wide variety of photo-biocatalysis, ranging from the photochemical delivery of electrons required in redox biocatalysis and photochemical cofactor and reagent (re)generation to direct photoactivation of enzymes enabling reactions unknown in nature. We highlight synthetically relevant transformations such as asymmetric reactions facilitated by the combination of light as energy source and enzymes' catalytic power.


Subject(s)
Light , Oxidoreductases/metabolism , Transaminases/metabolism , Biocatalysis , Oxidoreductases/chemistry , Photochemical Processes , Transaminases/chemistry
14.
J Am Chem Soc ; 140(40): 13034-13041, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30183276

ABSTRACT

Despite ample evidence for the unique reactivity offered by hypervalent F-iodanes, mechanistic investigations fall far behind. In order to shed light on the unusual behavior of such F-reagents, we conducted computational and experimental studies on the chemodivergent transformation of styrenes. We identified the spirocyclic F-cyclopropane as the common intermediate for both the C, H-fluorination and C, H-amination pathways. The fate of this key compound is determined by the extent of cationic charge delocalization controlled by the N-substituents. Exploiting this phenomenon, a multitude of different transformations have become available, leading, i.e., to the regiodivergent synthesis of indoles and tryptophans.

15.
J Am Chem Soc ; 140(12): 4344-4353, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29412652

ABSTRACT

In contrast to Nature that accomplishes polyene cyclizations seemingly with ease, such transformations are difficult to conduct in the lab. In our program dealing with the development of selective halogenations of alkenes, we now asserted that standard X+ reagents are perfectly suited for the biomimetic cation-π cyclization of both electron rich and poor linear polyenes in the presence of the Lewis base morpholine and the Lewis acid HFIP. The method stands out due to its broad substrate scope and practicability together with high chemical yields and excellent selectivities, even for highly challenging chloriranium-induced polyene cyclizations.

16.
Org Lett ; 18(24): 6508-6511, 2016 12 16.
Article in English | MEDLINE | ID: mdl-27978644

ABSTRACT

The first preparation of the N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A and its likewise naturally occurring minor atropisomer, in an atropisomerically pure form, is described. The synthesis succeeded by resolution of the already rotationally hindered, and thus atropo-diastereomeric acetamide precursors, which were then, without major loss of stereochemical information, cyclized to the respective target molecules. The strategy was applied to the first synthesis of the regioisomeric product ancistrocladinium D, likewise in a stereochemically pure form.

17.
Chembiochem ; 17(21): 2028-2032, 2016 11 03.
Article in English | MEDLINE | ID: mdl-27542168

ABSTRACT

Vanadium-dependent haloperoxidases (VHPOs) are a class of halogenating enzymes found in fungi, lichen, algae, and bacteria. We report the cloning, purification, and characterization of a functional VHPO from the cyanobacterium Acaryochloris marina (AmVHPO), including its structure determination by X-ray crystallography. Compared to other VHPOs, the AmVHPO features a unique set of disulfide bonds that stabilize the dodecameric assembly of the protein. Easy access by high-yield recombinant expression, as well as resistance towards organic solvents and temperature, together with a distinct halogenation reactivity, make this enzyme a promising starting point for the development of biocatalytic transformations.


Subject(s)
Biocatalysis , Cyanobacteria/enzymology , Halogenation , Peroxidases/metabolism , Crystallography, X-Ray , Models, Molecular , Peroxidases/chemistry
18.
Chem Soc Rev ; 45(22): 6270-6288, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27417189

ABSTRACT

The fluorination of organic molecules is a rapidly evolving and exciting field in synthesis, which still poses huge challenges despite the advances made in the past decades. Hypervalent iodine(iii) reagents, which have already proven their versatility as synthetic tools in organic chemistry, are currently on the rise in fluorination chemistry. With their ability to break new mechanistic grounds, they grant access to completely new reactivities and thus also to novel fluorinated structural scaffolds. This review aims to provide an overview of the achievements made in the iodine(iii) mediated fluorinations of aliphatic Csp2-carbon atoms with special focus on the opportunities provided by this exciting class of hypervalent substances.

19.
Org Lett ; 18(14): 3466-9, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27380445

ABSTRACT

In the presented method, a one-pot metal-free access to ß-lactams is provided. The developed strategy employs a hypervalent iodine(III)-triggered bromination/rearrangement/cyclization cascade reaction that allows the straightforward synthesis of a broad range of structurally different lactams from cheap and easily available imides. This triple cascade reaction is furthermore extendable by an in situ ring-opening reaction, giving direct access to isoserine derivatives from simple imines in a four-step, one-pot reaction.

20.
Chemistry ; 22(26): 8728-39, 2016 Jun 20.
Article in English | MEDLINE | ID: mdl-27061937

ABSTRACT

Within the repertoire of organic chemical transformations, the halogenation of substrates is among the most versatile, reliable, and broadly applicable reactions. Although a multitude of different methods are known today, there is still a huge demand for novel and, in particular, catalytic halogenation methods that exhibit new reactivities and selectivities. The class of hypervalent iodanes meets exactly these needs and thus offers a great opportunity to fuel this highly desirable direction within the field of halogenation chemistry. This Concept gives a short overview of recent examples focusing on selective and/or mechanistically unusual halogenations.

SELECTION OF CITATIONS
SEARCH DETAIL
...