Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(2): e0281558, 2023.
Article in English | MEDLINE | ID: mdl-36758042

ABSTRACT

Mutations in BRAF exon 15 lead to conformational changes in its activation loops, resulting in constitutively active BRAF proteins which are implicated in the development of several human cancer types. Different BRAF inhibitors have been developed and introduced in clinical practice. Identification of BRAF mutations influences the clinical evaluation, treatment, progression and for that reason a sensitive and specific identification of BRAF mutations is on request from the clinic. Here we present the SensiScreen® FFPE BRAF qPCR Assay that uses a novel real-time PCR-based method for BRAF mutation detection based on PentaBases proprietary DNA analogue technology designed to work on standard real-time PCR instruments. The SensiScreen® FFPE BRAF qPCR Assay displays high sensitivity, specificity, fast and easy-to-use. The SensiScreen® FFPE BRAF qPCR Assay was validated on two different FFPE tumour biopsy cohorts, one cohort included malignant melanoma patients previously analyzed by the Cobas® 4800 BRAF V600 Mutation Test, and one cohort from colorectal cancer patients previously analyzed by mutant-enriched PCR and direct sequencing. All BRAF mutant malignant melanoma patients were confirmed with the SensiScreen® FFPE BRAF qPCR Assay and additional four new mutations in the malignant melanoma cohort were identified. All the previously identified BRAF mutations in the colorectal cancer patients were confirmed, and additional three new mutations not identified with direct sequencing were detected. Also, one new BRAF mutation not previously identified with ME-PCR was found. Furthermore, the SensiScreen® FFPE BRAF qPCR Assay identified the specific change in the amino acid. The SensiScreen® FFPE BRAF qPCR Assay will contribute to a more specific, time and cost saving approach to better identify and characterize mutations in patients affected by cancer, and consequently permits a better BRAF characterization that is fundamental for therapy decision.


Subject(s)
Colorectal Neoplasms , Melanoma , Humans , Proto-Oncogene Proteins B-raf/genetics , DNA Mutational Analysis/methods , Melanoma/metabolism , Mutation , Real-Time Polymerase Chain Reaction/methods , Colorectal Neoplasms/genetics , Melanoma, Cutaneous Malignant
2.
PLoS One ; 12(6): e0178027, 2017.
Article in English | MEDLINE | ID: mdl-28636636

ABSTRACT

Activating mutations in codon 12 and codon 13 of the KRAS (Kirsten rat sarcoma viral oncogene homolog) gene are implicated in the development of several human cancer types and influence their clinical evaluation, treatment and prognosis. Numerous different methods for KRAS genotyping are currently available displaying a wide range of sensitivities, time to answer and requirements for laboratory equipment and user skills. Here we present SensiScreen® KRAS exon 2 simplex and multiplex CE IVD assays, that use a novel real-time PCR-based method for KRAS mutation detection based on PentaBase's proprietary DNA analogue technology and designed to work on standard real-time PCR instruments. By means of the included BaseBlocker™ technology, we show that SensiScreen® specifically amplifies the mutated alleles of interest with no or highly subdued amplification of the wild type allele. Furthermore, serial dilutions of mutant DNA in a wild type background demonstrate that all SensiScreen® assays display a limit of detection that falls within the range of 0.25-1%. Finally, in three different colorectal cancer patient populations, SensiScreen® assays confirmed the KRAS genotype previously determined by commonly used methods for KRAS mutation testing, and notably, in two of the populations, SensiScreen® identified additional mutant positive cases not detected by common methods.


Subject(s)
Biological Assay/methods , Colorectal Neoplasms/diagnosis , Exons , Multiplex Polymerase Chain Reaction/methods , Mutation/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Real-Time Polymerase Chain Reaction/methods , Cohort Studies , Colorectal Neoplasms/genetics , DNA, Neoplasm/genetics , Genotype , Humans , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...