Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nutr Res ; 117: 15-29, 2023 09.
Article in English | MEDLINE | ID: mdl-37423013

ABSTRACT

Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.


Subject(s)
Adiposity , Prenatal Exposure Delayed Effects , Rats , Pregnancy , Animals , Male , Female , Humans , Rats, Wistar , Taurine/pharmacology , Obesity/metabolism , Diet , Dietary Supplements , Lactation , Lipids , Diet, High-Fat/adverse effects , Maternal Nutritional Physiological Phenomena
2.
PeerJ ; 9: e11547, 2021.
Article in English | MEDLINE | ID: mdl-34141487

ABSTRACT

BACKGROUND: Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. METHODS: Female Wistar rats were fed a control diet (CON), CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. RESULTS: Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. DISCUSSION: This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality in CONT neonates indicates possible detrimental effects of taurine supplementation in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.

3.
PeerJ ; 7: e6656, 2019.
Article in English | MEDLINE | ID: mdl-30984479

ABSTRACT

BACKGROUND: Dietary intervention studies in animal models of obesity are crucial to elucidate the mechanistic effects of specific nutrients and diets. Although several models of diet induced obesity have been examined in rodents to assess obesity, there are few studies that have researched influence of different high fat and/or westernized diets. The aim of this study was to compare a high fat diet and a cafeteria diet on obesity related biochemical and physiological parameters in young male rats. METHODS: Five week old Wistar male rats were fed a control chow diet (C), butter-based high fat diet (HF) or cafeteria diet (CAF) for twelve weeks. In HF, 40% of energy came from fat and this ratio was 46% in CAF. CAF composed of highly energetic and palatable human foods along with chow diet. At the end of the feeding protocol all animals were culled using CO2 asphyxia and cervical dislocation after an overnight fasting. RESULTS: Total energy and fat intake of CAF was significantly higher than C and HF. CAF was more effective in inducing obesity, as demonstrated by increased weight gain, Lee index, fat depot weights and total body fat in comparison to C and HF. Despite increased adiposity in CAF, plasma glucose, insulin and HOMA-IR levels were similar between the groups. Plasma leptin and cholesterol levels were markedly higher in CAF than C and HF. DISCUSSION: We have demonstrated that there are differential effects of high fat diet and cafeteria diet upon obesity and obesity-related parameters, with CAF leading to a more pronounced adiposity in comparison to high fat diet in young male rats. Future studies should consider the varied outcomes of different diet induced obesity models and development of a standardized approach in similar research practices.

4.
Nutrients ; 7(12): 9847-59, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26633475

ABSTRACT

Several studies have indicated the influence of a maternal low protein diet on the fetus. However, the effect of a maternal low quality protein diet on fetal growth and development is largely unknown. Wistar rats (11 weeks old) were mated and maintained on either a chow diet with 20% casein (n = 6) as the control group (C), or a low quality protein diet with 20% wheat gluten (n = 7) as the experimental group (WG) through gestation and lactation. Maternal body weights were similar in both groups throughout the study. Birth weights were not influenced by maternal diet and offspring body weights during lactation were similar between the groups. Offspring's plasma amino acid profiles showed that plasma methionine, glutamine and lysine were significantly lower and aspartic acid, ornithine and glycine-proline were significantly higher in the WG. Plant based protein comprises an important part of protein intake in developing countries. It is well-known that these diets can be inadequate in terms of essential amino acids. The current study shows differential effects of a maternal low quality protein diet on the offspring's plasma amino acids. Future studies will examine further aspects of the influence of maternal low quality protein diets on fetal growth and development.


Subject(s)
Amino Acids/blood , Animal Nutritional Physiological Phenomena , Diet , Dietary Proteins/administration & dosage , Maternal Nutritional Physiological Phenomena , Animals , Dietary Proteins/analysis , Female , Pregnancy , Rats , Rats, Wistar , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...