Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 9(2)2023 01 11.
Article in English | MEDLINE | ID: mdl-36596253

ABSTRACT

Remote photoplethysmography (rPPG) using camera-based imaging has shown excellent potential recently in vital signs monitoring due to its contactless nature. However, the optimum filter selection for pre-processing rPPG data in signal conditioning is still not straightforward. The best algorithm selection improves the signal-to-noise ratio (SNR) and therefore improves the accuracy of the recognition and classification of vital signs. We recorded more than 300 temporal rPPG signals where the noise was not motion-induced. Then, we investigated the best digital filter in pre-processing temporal rPPG data and compared the performances of 10 filters with 10 orders each (i.e., a total of 100 filters). The performances are assessed using a signal quality metric on three levels. The quality of the raw signals was classified under three categories; Q1 being the best and Q3 being the worst. The results are presented in SNR scores, which show that the Chebyshev II orders of 2nd, 4th, and 6th perform the best for denoising rPPG signals.


Subject(s)
Algorithms , Photoplethysmography , Photoplethysmography/methods , Signal-To-Noise Ratio , Motion
2.
Sens Actuators A Phys ; 349: 114058, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36447633

ABSTRACT

Stimulated by the COVID-19 outbreak, the global healthcare industry better acknowledges the necessity of innovating novel methods for remote healthcare monitoring and treating patients outside clinics. Here we report the development of two different types of graphene textile electrodes differentiated by the employed fabrication techniques (i.e., dip-coating and spray printing) and successful demonstration of ergonomic and truly wearable, single-arm diagnostic electrocardiography (SADE) using only 3 electrodes positioned on only 1 arm. The performance of the printed graphene e-textile wearable systems were benchmarked against the "gold standard" silver/silver chloride (Ag/AgCl) "wet" electrodes; achieving excellent correlation up to ∼ 96% and ∼ 98% in ECG recordings (15 s duration) acquired with graphene textiles fabricated by dip-coating and spray printing techniques, respectively. In addition, we successfully implemented automatic detection of heartrate of 8 volunteers (mean value: 74.4 bpm) during 5 min of static and dynamic daily activities and benchmarked their recordings with a standard fingertip photoplethysmography (PPG) device. Heart rate variability (HRV) was calculated, and the root means successive square difference (rMMSD) metric was 30 ms during 5 min of recording. Other cardiac parameters such as R-R interval, QRS complex duration, S-T segment duration, and T-wave duration were also detected and compared to typical chest ECG values.

3.
Phys Eng Sci Med ; 45(4): 1317-1323, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36036875

ABSTRACT

Point-of-care remote photoplethysmography (rPPG) devices that utilize low-cost RGB cameras have drawn considerable attention due to their convenience in contactless and non-invasive vital signs monitoring. In rPPG, sufficient lighting conditions are essential for obtaining accurate diagnostics by observing the complete signal morphology. The effects of illuminance intensity and light source settings play a significant role in rPPG assessment quality, and it was previously observed that different lighting schemes result in different signal quality and morphology. This study presents a quantitative empirical analysis where the quality and morphology of rPPG signals were assessed under different light settings. Participants' faces were exposed to the white LED spotlight, first when the sources were installed directly behind the video camera, and then when the sources were installed in a cross-polarized scheme. Hence, the effect of specular reflectance on rPPG signals could be observed in an increasing projection. The signal qualities were analyzed in each intensity level using a signal-to-noise (SNR) ratio metric. In 3 of 7 participants, placing the video camera on the same level as the light source led to signal quality loss of up to 3 dB for the range 30-60 Lux. In addition, two fundamental morphological features were analyzed, and the derivative-related feature was found to be increasing with illuminance intensity in 6 of 7 participants.


Subject(s)
Algorithms , Photoplethysmography , Humans , Vital Signs , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...