Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36364505

ABSTRACT

Charged excitons or trions are essential for optical spectra in low-dimensional doped monolayers (ML) of transitional metal dichalcogenides (TMDC). Using a direct diagonalization of the three-body Hamiltonian, we calculate the low-lying trion states in four types of TMDC MLs as a function of doping and dielectric environment. We show that the fine structure of the trion is the result of the interplay between the spin-valley fine structure of the single-particle bands and the exchange interaction. We demonstrate that by variations of the doping and dielectric environment, the fine structure of the trion energy can be tuned, leading to anticrossing of the bright and dark states, with substantial implications for the optical spectra of the TMDC ML.

2.
J Chem Phys ; 153(4): 044132, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752700

ABSTRACT

We demonstrate that the temperature and doping dependencies of the photoluminescence (PL) spectra of a doped MoS2 monolayer have several peculiar characteristics defined by the trion radiative decay. While only zero-momentum exciton states are coupled to light, radiative recombination of non-zero momentum trions is also allowed. This leads to an asymmetric broadening of the trion spectral peak and redshift of the emitted light with increasing temperature. The lowest energy trion state is dark, which is manifested by the sharply non-monotonic temperature dependence of the PL intensity. Our calculations combine the Dirac model for the single-particle states, with parameters obtained from the first-principles calculations, and the direct solution of the three-particle problem within the Tamm-Dancoff approximation. The numerical results are well captured by a simple model that yields analytical expressions for the temperature dependencies of the PL spectra.

3.
Phys Rev Lett ; 119(14): 147202, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053307

ABSTRACT

An external off-resonant pumping is proposed as a tool to control the Dzyaloshinskii-Moriya interaction (DMI) in ferromagnetic layers with strong spin-orbit coupling. Combining theoretical analysis with numerical simulations for an s-d-like model, we demonstrate that linearly polarized off-resonant light may help stabilize novel noncollinear magnetic phases by inducing a strong anisotropy of the DMI. We also investigate how with the application of electromagnetic pumping one can control the stability, shape, and size of individual Skyrmions to make them suitable for potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...